

The Global N₂O Model Intercomparison Project (NMIP) – Overview, Status and the First Results

GLOBAL

Hanqin Tian

International Center for Climate and Global Change Research School of Forestry and Wildlife Sciences, Auburn University and

NMIP Participants

The Global N2O Budget: A Joint Activity between GCP and INI

> NMIP: The Global N_2O Model Intercomparison Project

International Nitrogen Initiative

GCP-INI Global N₂O budget The Scientific Committee

GLOBAI

B

122

Co-Chairs:

Hanqin Tian (USA) and Rona Thompson (Norway)

Members:

 Pep Canadell (Australia) – Global Carbon Project (GCP), Wilfried Winiwarter (Austria) – International Nitrogen Initiative (INI), Almut Arneth (Germany), Parv Suntharalingam (UK), Eric Davison (USA), Michael Prather (USA), Luiz Martinelli (Brazil), Pete Raymonds (USA), Pierre Regnier (Belgium), Philippe Ciais (France), Robert Jackson (USA), Greet Maenhout and Adrian Leip (Italy), Carolien Kroeze (The Netherlands), Feng Zhou (China)

International Nitrogen Initiative

Toward a regular update of major greenhouse gases

- Annual update of the global C budget (since 2007)
- The global CH₄ budget published on (12/12/2016)
- What is next? The global N₂O budget

GLOBA

Overarching Goals of GCP-INI Joint Activity

- Establish an improved global N₂O budget and distinguish anthropogenic perturbations from natural sources of N₂O (updates ca. every 2 years)
- Resolve emissions at seasonal to annual scales and examine inter-annual variability and long-term trends
- First budget paper: global N₂O budget for the last 3.5 decades (1980 2016), which also meets the needs for decadal averages required by major climate assessments (e.g. IPCC)

The first global N₂O budget: Target Date: **2018**

Toward a Full Budget Assessment of Greenhouse Gases (CO₂, CH₄ and N₂O)

Source: Tian et al. 2016 Nature

Global N₂O Budget Components and Leaders

Top-down assessment Atmospheric observations & modeling (Lead: R. Thompson; Michael Prather) Terrestrial biosphere modeling Emissions from agricultural and natural soils (Lead: Hanqin Tian)

Inventory-based estimates Emissions from agriculture, industry, waste, and fuel & biomass combustion (Lead: Greet Maenhout)

> Inland water system models and observations Emissions from rivers, reservoirs, and lakes (Lead: Pete Raymond & Pierre Regnier)

Ocean biogeochemistry models and observations Fluxes in the coastal and open ocean (Lead: Parv Suntharalingam)

Integration and Uncertainty (Lead: H. Tian and R. Thompson) The Global N2O Budget: A Joint Activity between GCP and INI

> NMIP: The Global N_2O Model Intercomparison Project

Framework of N₂O Model Intercomparison Project (NMIP)

Model input data

- Climate (Temperature, precipitation, radiation, etc.)
- CO₂ concentration
- N deposition
- N fertilizer use
- Manure N use
- Irrigation
- Land cover and land use
- Soil texture
- topography (elevation, slope, aspect, etc.)

Model calibration & evaluation

- Field observations
- Statistical extrapolation
- Inversion models

NMIP benchmarks for **model** performance and **data** evaluation

Objectives of NMIP

Objective 1

Unravel the major controlling processes of N_2O fluxes and the uncertainties from model structure and parameters

Objective 2

Quantify spatial and temporal patterns of global/regional N_2O fluxes, and attribute the relative contributions of multiple environmental factors

Objective 3

Provide a bench-marking estimate of global and regional N_2O budgets through synthesizing multi-source data

Participating models

Model	Contact	Affiliation	Citation		
CLM-CN	Eri Saikawa	Emory University, USA	Saikawa et al. (2013)		
DLEM	Hanqin Tian	Auburn University	Tian et al. (2015) Xu et al. (2017)		
LM3V-N	Stefan Gerber	University of Florida	Huang and Gerber (2015)		
LPX	Sebastian Lienert	University of Bern	Kelly et al. (2014)		
LPJ-GUESS	Stefan Olin/ Almut Arneth	Lund University, Sweden/KIM, Dept. Atmospheric Environmental Research, Germany	Olin et al. (2015); Xu-Ri and Prentice (2008)		
O-CN	Sönke Zaehle	Max Planck Institute for Biogeochemistry	Zaehle et al. (2011)		
ORCHIDEE	Nicolas Vuichard	IPSL – LSCE, France	Vuichard et al. (in prep)		
ORCHIDEE-CNP	Jinfeng Chang/ Daniel Goll	IPSL – LSCE, France	Goll et al., 2017		
TRIPLEX-GHG	Changhui Peng	University of Quebec at Montreal, Canada	Zhu et al. (2014); Zhang et al. (2017)		
VISIT	Akihiko Ito	National Institute for Environmental Studies, Japan	Inatomi et al. (2010); Ito and Inatomi (2012)		

	CLM-CN	DLEM	LM3V-N	LPJ -GUESS	O-CN	ORCHIDEE	ORCHIDEE- CNP	TRIPLEX- GHG	VISIT
Open N cycle ¹	yes	yes	yes	yes	yes	yes	yes	yes	yes
C-N coupling	yes	yes	yes	yes	yes	yes	yes	yes	yes
N pools ²	(13, 3, 4)	(6, 6, 8)	(6, 4, 3)	(5, 6, 11)	(9, 6, 9)	(9, 6, 9)	(9, 6, 9)	(3, 9, 4)	(4, 1, 4)
Demand and supply-driven Plant N uptake	yes	yes	yes	yes	yes	yes	yes	yes	yes
N allocation ³	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic
Nitrification	f(T, SWC)	J(T, SWC, C _{NH4})	J(T, SWC, C _{NH4})	f(T, C _{NB4})	f(T, SWC, pH, С _{NH4})	f(T, SWC, pH C _{NH4})	_f (T, SWC, pH, С _{NH4})	ƒ(рН, С _{МН4} , Т, SWC)	f(T, SWC, pH, C _{NH4})
Denitrification	f(T, SWC, C _{N08})	f(T, clay, Rh, C _{NO3})	f(T _{soil} , Rh, SWC, C _{NH4} , C _{NO3}	f (T, C _{NO8})	f(T, SWC, pH, R _{mb} , C _{NO3})	f(T, SWC, pH, denitrifier, C _{NO3})	f(T, SWC, pH, R _{mb} , C _{NOt})	f(DOC, C _{NO8} , pH, T _{soil})	f(SWC, Rh, C _{NO3})
Mineralization, immobilization	f(C:N)	f (C:N)	f(C _{NO3} , C _{NH4})	_f(C:N)	f(C:N)	f(C:N)	_f(C:N)	,f(C:N)	, f (C:ℕ)
N leaching	f(runoff)	f(runoff)	f(runoff)	f(runoff)	f(runoff, clay)	f(runoff)	f(runoff)	f(runoff)	f(runoff)
NH ₃ volatilization	f(C _{NH4})	f(pH, T, SWC, C _{NH4})	ƒ(рН, Т, SWC, С _{NH4})	f(pH, C _{NH4})	f(pH, C _{NH4})	f(pH,C _{NH4})	f(pH,C _{NH4})	f(pH, C _{NH4})	f(pH, T, SWC, C _{NH4})
Plant N turnover ⁴	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic
N resorption	f(C:N)	f(C:N)	fixed	Crop: dynamic, the rest: fixed	fixed	f(Nleaf)	fixed	_ f (C:N)	fixed
N fixation	f(NPP)	Fixed	f(C _{NH4} , C _{NO3} , light, plant demand)	f(ET)	f(C _{cost} , C _{root})	(ET)	f(NPP)	f(biomass)	f(ET)
N fertilizer use	no	yes	yes	yes	yes	yes	yes	yes	yes
Manure N use	no	yes	yes	yes	во	yes	yes	no	yes
N deposition	yes	yes	yes	yes	yes	yes	yes	yes	yes

Table 3. Model characteristics in simulating major N cycling processes

Note: ¹ "open" denotes that excess N can be leached from the system; ²numbers of N pools (vegetation pools, litter pools, soil pools); ³ Dynamic denotes time-varied N allocation ratio to different N pools; ⁴turnover time for various vegetation nitrogen pools. T: soil temperature; Clay: soil clay fraction; ET: evapotranspiration; Biomass: vegetation carbon; NPP: net primary production; Nleaf: leaf N concentration; Runoff: soil surface and drainage runoff; Ccost: carbon cost during N₂ fixation; SWC: soil water content; denitrifier: soil denitrifier biomass; Rh: soil heterogeneous respiration. Tian et al. (2018) BAMS

NMIP Input Data

Data nama	Daviad	Temporal	Spatial	Sources	Variables
	I CI IOU	resolution	resolution	Sources	variabies
N deposition	1860-2014	Monthly	0.5°	CCMI	NH _x -N and NO _y -N deposition
N Fertilizer use in cropland	1860-2014	Yearly	0.5°	Lu and Tian (2017)	N fertilizer use rate in cropland
N fertilizer use in pasture	1860-2014	Yearly	0.5°	Xu et al. (in preparation)	
Manure N application in cropland	1860-2014	Yearly	0.5°	Zhang et al. (2017)	
Manure N application in pasture	1860-2014	Yearly	0.5°	Xu et al. (in preparation)	
Manure N deposition in grazing land	1860-2014	Yearly	0.5°	Xu et al. (in preparation)	
Potential vegetation	One time	One time	0.5°	SYNMAP	Fraction of natural vegetation types
Cropland and Pasture	1860-2016	Yearly	0.5°	HYDE 3.2	Cropland and pasture fraction
Climate	1901-2016	6-hourly	0.5°	CRU-NCEP	Incoming longwave / shortwave radiation, air humidity, pressure, precipitation, temperature, and wind speed
CO ₂	1860-2016	Monthly	0.5°	NCAR	CO ₂ concentration

Gridded (0.5°×0.5°), Annual N Fertilizer application in cropland

Gridded (0.5°×0.5°), Annual Manure N application in cropland

Tian et al. (2018) BAMS

Gridded (0.5°×0.5°), annual N fertilizer use, Manure N use and Manure N deposition in grassland from 1961 to 2014

Gridded (0.5°×0.5°), **Monthly Atmospheric Nitrogen deposition**

Data is provided by the IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) http://blogs.reading.ac.uk/ccmi/

Experimental design

Experimental design (1860-2016)

					_			,
Spin-up		1	Climate	CO ₂	LCLUC	Ndep	Nfer	ManureN
Climate: 1901-1920 CO ₂ : 1860 Nitrogen deposition: 1860 Nitrogen fertilizer: 1860 Manure: 1860 Land use: 1860	Equilibrium	S0	1901-1920 average	1860	1860	1860	1860	1860
		→ S1	1901-2016	1860-2016	1860-2016	1860-2016	1860-2016	1860-2016
		S2	1901-2016	1860-2016	1860-2016	1860-2016	1860-2016	1860
		→ S3	1901-2016	1860-2016	1860-2016	1860-2016	1860	1860
		→ S4	1901-2016	1860-2016	1860-2016	1860	1860	1860
		→ S5	1901-2016	1860-2016	1860	1860	1860	1860
		S6	1901-2016	1860	1860	1860	1860	1860

The First Results

Ensemble Mean of Global N₂O emissions during 1860-2016

Model ensemble based on the "best estimates" of 6 models (S1 for DLEM, ORCHIDEE-CNP, and TRIPLEX; S2 for LPX, OCN, and VISIT)

Percent contribution of Major biomes to N₂O emissions

- 1. Forests make the largest contribution (51% ~ 64%) to global N_2O emissions throughout the entire period.
- 2. The percentage of N_2O emissions from cropland increased from 11% to 32%.

Model ensemble estimated global N₂O emissions

Model ensemble estimated contribution of environmental factors to net change in N₂O emission

Model ensemble estimated N₂O Emissions by Driving Forces

The global N2O budget: Components

Source: IPCC AR5

Regionalization

Propose small adjustment to RECCAP regions...

Mask with smaller sub-continental regions following country borders, large countries (USA, Canada, China, Brazil) separated – allows flexibility for more detailed studies Same mask but aggregating some regions together: 10 (sub)-continental regions (excl. Arctic and Antarctic) similar to RECCAP

Expected Products:

- Pre-industrial period (1860/s) for grid-level and PFT-level output,
- annual time step for grid-level output during 1861-2016, and
- monthly time step for biome-level output during 1980-2016.

The first global N₂O budget: Target Date: **2018** **Invitation to attend/contribute to the AGU Session:**

<u>Global and Regional Nitrous Oxide Budget:</u> <u>Data, Models and Uncertainty</u>

Conveners:

Hanqin Tian, Auburn University, USA;

Rona Thompson, Norwegian Institute for Air Research, Norway,

Josep Canadell, CSIRO Ocean and Atmosphere, Australia

Wilfried Winiwarter, IIASA

Acknowledgements

All NMIP Participants

Point of Contact:

Dr. Hanqin Tian

Director and Solon & Martha Dixon Professor

International Center for Climate and Global Change Research

School of Forestry and Wildlife Sciences, Auburn University

602 Duncan Drive, Auburn, AL 36849, USA.

e-mail: <u>tianhan@auburn.edu</u>

website: http://www.auburn.edu/~tianhan