FRONTIERS 2018/19 **Emerging Issues of Environmental Concern** © 2019 United Nations Environment Programme ISBN: 978-92-807-3737-0 Job No: DEW/2221/NA ### Disclaimer This publication may be reproduced in whole or in part and in any form for educational or non-profit services without special permission from the copyright holder, provided acknowledgement of the source is made. UN Environment would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from UN Environment. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Communication Division, UN Environment, P.O. Box 30552, Nairobi, 00100, Kenya. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of UN Environment concerning the legal status of any country, territory or city or its authorities, or concerning the delimitation of its frontiers or boundaries. For general guidance on matters relating to the use of maps in publications please go to: http://www.un.org/Depts/Cartographic/english/htmain.htm Mention of a commercial company or product in this publication does not imply endorsement by UN Environment. The use of information from this publication concerning proprietary products for publicity or advertising is not permitted. © Maps, photos, and illustrations as specified. ### **Suggested citation** UNEP (2019). Frontiers 2018/19 Emerging Issues of Environmental Concern. United Nations Environment Programme, Nairobi. ### **Production** Science Division UN Environment P.O. Box 30552 Nairobi, 00100, Kenya Tel: (+254) 20 7621234 E-mail: publications@unenvironment.org Web: www.unenvironment.org UN Environment promotes environmentally sound practices globally and in its own activities. Our distribution policy aims to reduce UN Environment's carbon footprint. # **FRONTIERS 2018/19** **Emerging Issues of Environmental Concern** # UN ENVIRONMENT FRONTIERS 2018/19 REPORT # **Table of contents** | | Foreword | 7 | |----|--|----| | | Acknowledgements | 8 | | Ŷ | Synthetic Biology: Re-engineering the Environment | 10 | | | Opportunities and challenges | 10 | | | Rewriting the code of life | 12 | | | Applications redefined: From laboratory to ecosystem | 16 | | | Innovating with wisdom | 18 | | | References | 20 | | | Ecological Connectivity: A Bridge to Preserving Biodiversity | 24 | | | Reconnecting fragmented ecosystems | 24 | | | The forces of fragmentation | 26 | | | Promoting connectivity solutions | 30 | | | Setting targets for future connectivity | 32 | | | References | 34 | | C | Permafrost Peatlands: Losing Ground in a Warming World | 38 | | | Accelerating change in the Arctic | 38 | | | Thawing permafrost, decaying peat and complex interplays | 40 | | | Growing awareness of permafrost peatlands | 44 | | | Knowledge priorities and network expansion | 46 | | | References | 48 | | | The Nitrogen Fix: From Nitrogen Cycle Pollution to Nitrogen Circular Economy | 52 | | | The global nitrogen challenge | 52 | | | The knowns and known-unknowns of nitrogen | 54 | | | Policy fragmentation and circular economy solutions | 58 | | | Towards a holistic international approach for nitrogen | 60 | | | References | 62 | | ** | Maladaptation to Climate Change: Avoiding Pitfalls on the Evolvability Pathway | 66 | | | Defining adaptation and maladaptation for the climate change context | 66 | | | Maladaptation at scale | 68 | | | Avoiding maladaptation in a 1.5°C constrained future | 73 | | | References | 74 | # **Foreword** In the first decade of the 20th century, two German chemists – Fritz Haber and Carl Bosch – developed a way to produce synthetic nitrogen cheaply and on a large scale. Their invention spurred the mass production of nitrogen-based fertilizers, and thus transformed farming around the globe. It also marked the beginning of our long-term interference with the Earth's nitrogen balance. Every year, an estimated US\$200 billion worth of reactive nitrogen is now lost into the environment, where it degrades our soils, pollutes our air and triggers the spread of "dead zones" and toxic algal blooms in our waterways. It's no wonder that many scientists are arguing that "the Anthropocene" should become the official name of the current geological era. In just a few decades, humankind has caused global temperatures to rise 170 times faster than the natural rate. We have also deliberately modified more than 75 per cent of the planet's land surface, and permanently altered the flow of more than 93 per cent of the world's rivers. We are not only causing drastic changes to the biosphere, we are also now capable of rewriting – and even creating from scratch – the very building blocks of life. Every year a network of scientists, experts and institutions across the world work with UN Environment to identify and analyze emerging issues that will have profound effects on our society, economy and environment. Some of these issues are linked to new technologies that have astonishing applications and uncertain risks, while others are perennial issues, such as the fragmentation of wild landscapes and the thawing of long-frozen soil. Another issue, nitrogen pollution, represents an unintended consequence of decades of human activity in the biosphere. While the final issue analyzed here, maladaptation to climate change, highlights our failure to adequately and appropriately adjust to the shifting world around us. There is some good news to report. As you can read in the pages that follow, a holistic approach to the global challenge of nitrogen management is beginning to emerge. In China, India and the European Union, we are seeing promising new efforts to reduce losses and improve the efficiency of nitrogen fertilizers. Ultimately, the recovery and recycling of nitrogen, as well as other valuable nutrients and materials, can help us to farm cleanly and sustainably, a hallmark of a truly circular economy. The issues examined in Frontiers should serve as a reminder that, whenever we interfere with nature – whether at the global scale or the molecular level – we risk creating long-lasting impacts on our planetary home. But by acting with foresight and by working together, we can stay ahead of these issues and craft solutions that will serve us all, for generations to come. Joyce Msuya **Acting Executive Director** United Nations Environment Programme # **Acknowledgements** ### **Synthetic Biology: Re-engineering the environment** ### **Lead Authors** Bartlomiej Kolodziejczyk, H2SG Energy Pte. Ltd., Singapore Natalie Kofler, Yale Institute for Biospheric Studies, Yale University, Connecticut, United States ### **Contributors and Reviewers** Marianela Araya, Convention on Biological Diversity, Montreal, Canada James Bull, College of Natural Sciences, University of Texas at Austin, Texas, United States Jackson Champer, Department of Biological Statistics and Computational Biology, Cornell University, New York, United States Chen Liu, Department of Biological Statistics and Computational Biology, Cornell University, New York, United States Yongyuth Yuthavong, National Science and Technology Development Agency of Thailand, Pathumthani, Thailand # **Ecological Connectivity: A bridge to preserving Biodiversity** ### **Lead Author** Gary Tabor, Center for Large Landscape Conservation, Montana, United States ### **Contributors and Reviewers** Maya Bankova-Todorova, The Mohamed bin Zayed Species Conservation Fund, Abu Dhabi, United Arab Emirates Camilo Andrés Correa Ayram, Alexander von Humboldt Biological Resources Research Institute, Bogotá, Colombia Letícia Couto Garcia, Federal University of Mato Grosso do Sul, Campo Grande, Brazil Valerie Kapos, UN Environment – World conservation Monitoring Centre, Cambridge, United Kingdom Andrew Olds, School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Australia Ileana Stupariu, Faculty of Geography, University of Bucharest, Romania # Permafrost Peatlands: Losing ground in a warming world ### **Lead Author** Hans Joosten, Greifswald University/Greifswald Mire Centre, Greifswald, Germany ### **Contributors and Reviewers** Dianna Kopansky, UN Environment, Nairobi, Kenya David Olefeldt, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada Dmitry Streletskiy, Department of Geography, The George Washington University, Washington DC, United States # The Nitrogen Fix: From nitrogen cycle pollution to nitrogen circular economy ### Lead Authors Mark Sutton, Centre for Ecology & Hydrology, Edinburgh, United Kingdom Nandula Raghuram, Guru Gobind Singh Indraprastha University, New Delhi, India Tapan Kumar Adhya, Kalinga Institute of Industrial Technology Bhubaneswar, Odisha, India ### **Contributors and Reviewers** Jill Baron, U.S. Geological Survey, Colorado, United States Christopher Cox, UN Environment, Nairobi, Kenya Wim de Vries, Wageningen University and Research, Wageningen, The Netherlands Kevin Hicks, Stockholm Environment Institute, York, United Kingdom Clare Howard, Centre for Ecology & Hydrology, Edinburgh, United Kingdom Xiaotang Ju, College of Agricultural Resources and Environmental Science, China Agricultural University, Beijing, China David Kanter, College of Arts and Science, New York University, David Kanter, College of Arts and Science, New York University, New York, United States Cargele Masso, International Institute of Tropical Agriculture, Ibadan, Nigeria Jean Pierre Ometto, National Institute for Space Research, São José dos Campos, Brazil Ramesh Ramachandran, National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate
Change, Chennai, India Hans Van Grinsven, PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands Wilfried Winiwarter, International Institute of Applied Systems Analysis, Laxenburg, Austria # Maladaptation to Climate Change: Avoiding pitfalls on the evolvability pathway ### **Lead Author** Catherine McMullen, Stockholm Environment Institute, Bangkok, Thailand ### **Contributors and Reviewers** Thomas Downing, Global Climate Adaptation Partnership, Oxford, United Kingdom Anthony Patt, Institute for Environmental Decisions, ETH Zürich, Zürich, Switzerland Bernadette Resurrección, Stockholm Environment Institute, Bangkok, Thailand Jessica Troni, UN Environment, Nairobi, Kenya ### Special thanks are extended to Alexandra Barthelmes and Cosima Tegetmeyer, Greifswald Mire Centre, Germany; Marin Klinger, National Snow and Ice Data Center, Colorado, United States; Salome Chamanje, David Cole, Nicolien Delange, Angeline Djampou, Philip Drost, Virginia Gitari, Jian Liu, Ariana Magini, Nada Matta, Pauline Mugo, Susan Mutebi-Richards, Shari Nijman, Andreas Obrecht, Samuel Opiyo, Meses Osani, Roxanna Samii, Rajinder Sian, Nandita Surendran and Josephine Wambua, UN Environment ### **Production advisers** Maarten Kappelle and Edoardo Zandri, UN Environment ### Production team Editor-in-chief: Pinya Sarasas, UN Environment Technical support: Allan Lelei, UN Environment Copy editor: Alexandra Horton, United Kingdom ### Graphics, design and layout Graphic designer: Audrey Ringler, UN Environment Cartographer: Jane Muriithi, UN Environment ### **Printing** UNON/Publishing Services Section/Nairobi, ISO14001:2004-Certified Photo credit: oticki / Shutterstock.com # The Nitrogen Fix: From nitrogen cycle pollution to nitrogen circular economy ### The global nitrogen challenge The *UNEP 2014 Year Book* highlighted the importance of excess reactive nitrogen in the environment.¹ Its conclusions are alarming. This is not just because of the magnitude and complexity of nitrogen pollution, but also because so little progress has been made in reducing it. Few of the solutions identified have been scaled up, while the world continues to pump out nitrogen pollution that contributes significantly to declines in air quality, deterioration of terrestrial and aquatic environments, exacerbation of climate change, and depletion of the ozone layer.²⁻¹⁰ These impacts hinder progress toward the Sustainable Development Goals as they affect human health, resource management, livelihoods and economies.¹¹⁻¹⁵ Yet there are signs of hope. The past four years have seen a transformation in approaches to managing nitrogen pollution. These include new thinking for both consumption and production in order to seriously address the nitrogen problem. 16-24 Nitrogen is an extremely abundant element in the Earth's atmosphere. In the form of the $\rm N_2$ molecule, nitrogen is harmless, making up 78 per cent of every breath we take. The two nitrogen atoms are held together by a strong triple bond (N=N), making it extremely stable and chemically unreactive. The planet benefits because $\rm N_2$ allows a safe atmosphere in which life can flourish, while avoiding the flammable consequences of too much oxygen. The environmental interest in nitrogen focuses on the conversion of $\rm N_2$ into other chemically reactive forms. For simplicity, scientists refer to all other nitrogen forms as "fixed" or "reactive nitrogen" ($\rm N_p$). ^{11,25} There are many types of $\rm N_p$ with many different effects – beneficial and harmful - and this is where the complications arise. Reactive nitrogen is essential for all life on earth. For example, ammonia (NH₂) is the foundation for amino acids, proteins, enzymes and DNA, and thus central to the metabolism of all life forms. Similarly, nitric oxide (NO) acts as a key biological signalling compound, while ammonium (NH₄+) and nitrate (NO₂-) are the major nutrient forms of nitrogen essential for plant growth. This points to a primary benefit of N₂ compounds in that they help to produce food and animal feed. Using the Haber-Bosch process of artificial nitrogen "fixation", humans have massively scaled up the manufacture of fertilizers – ammonia, urea and nitrates – to sustain a growing world population.²⁶ In parallel, humans benefit from the natural biological fixation of N₂ to N₂ by specialist bacteria found in soil and associated with the roots of legume crops. Against these benefits must be set the numerous losses of ammonia, nitrate, nitric oxide (NO), nitrous oxide (N_2 O) and many other forms of N₂ pollution that cause multiple impacts on the environment. These may occur directly following fertilizer use, while animal manure, human excreta and other organic wastes also cause huge losses of N, to the environment. Although the fraction of N₂ lost to the environment from biological nitrogen fixation is thought to be smaller than from many fertilizers, once excreted from animals and humans, both sources contribute to N₂ pollution. Reactive nitrogen is also yielded as a by-product of human activities. For instance, fossil fuel and biomass combustion processes release NO and NO₂, collectively called NO_x. While major efforts have been made to reduce NO_v from vehicles and energy generation, emissions are still escalating in rapidly developing parts of the world.^{6,12} Altogether, humans are producing a cocktail of reactive nitrogen that threatens health, climate and ecosystems, making nitrogen one of the most important pollution issues facing humanity. Yet the scale of the problem remains largely unknown and unacknowledged outside scientific circles. ### Different forms of nitrogen in the environment ### Di-Nitrogen (N₂) ### Source N₂ makes up 78% of air we breathe ### **Benefits** N₂ maintains stable atmosphere for life on Earth. It makes the sky appear blue. ### **Effects** N₂ is harmless and chemically unreactive ### Ammonia (NH₂) ### Source Manure, urine, fertilizers and biomass burning ### **Benefits** NH₃ is the foundation for amino acids, protein and enzymes. Ammonia is common used as fertilizer. ### **Effects** NH₃ causes eutrophication and affects biodiversity. It forms particulate matter in air which affects health. # Nitric Oxide (NO) and Nitrogen Dioxide (NO₃) ### Source Combustion from transport, industry and energy sector. NO and $\mathrm{NO_2}$ are collectively known as $\mathrm{NO_X}$. ### **Benefits** NO is essential in human physiology. NO_2 has no known benefit. ### **Effects** NO and NO₂ (or NO_x) are major air pollutants, causing heart disease and respiratory illness. ### Nitrate (NO₃) ### Source Wastewater, agriculture and oxidation of NO_{X} ### **Benefits** Widely used in fertilizers and explosives ### **Effects** It forms particulate matter in air and affects health. In water, it causes eutrophication. ### Nitrous Oxide (N₂O) ### Source Agriculture, industry and combustion ### Benefits Used in rocket propellants and in medical procedure as laughing gas ### **Effects** N₂O is a greenhouse gas–300 times more powerful than CO₂. It also causes depletion of stratospheric ozone. ### The knowns and known-unknowns of nitrogen Both the cycling of nitrogen compounds and the human impacts are well documented. 4,12,27,28 Yet compared with the role of carbon in climate change, there has been little public debate about the need to take action on nitrogen. The increased levels of N_r compounds in the air above cities and above agricultural areas are measurable, for example as $NO_{\chi'}$ NH $_3$ and fine particulate matter, or $PM_{2.5}$. Elevated levels of NO_3^- in groundwater under agricultural areas in several regions around the world and in rivers downstream of cities with little or no sewage treatment are equally quantifiable. Atmospheric concentrations of the greenhouse gas N_2O are accumulating at an accelerating rate. The clear message is that humans are massively altering the global nitrogen cycle, causing multiple forms of pollution and impacts, making N_r a key pollutant to tackle, from local to global scales. 22 The European Nitrogen Assessment identified five key threats of nitrogen pollution: water quality, air quality, greenhouse- gas balance, ecosystems and biodiversity, and soil quality. It highlighted that nitrogen pollution itself is not a new problem, but that nitrogen management needs to be part of the solution to many existing environmental problems. Concerning food production, global nitrogen use is extremely inefficient. Considering the whole food chain, only around 20 per cent of the N_r added in farming ends up in human food. This implies that a worrying 80 per cent is wasted as pollution and N₂ to the environment, demonstrating that N_r pollution represents a massive loss of valuable resources. While past efforts have focused on a fragmented approach between different N_r forms, considering them all together has several advantages. First, it allows us to start looking at the synergies and trade-offs between N_r benefits and different types of N_r pollution. Secondly, and just as important, it encourages us to quantify the societal cost of all the impacts of nitrogen pollution in order to inform policy and the general public. 13,30 Cost estimates can help guide mitigation policies, however, the true cost of N_r pollution is really a known-unknown, since The average concentration of nitrogen dioxide (NO₃) in the troposphere in 2014 NO_2 is a gas emitted mainly from cars, power plants and industrial activity. NO_2 and other NO_2 react with other air pollutants to form harmful ground-level ozone, acid rain and particulate matter. Photo credit: NASA Goddard Space Flight Center Video: Saving the Great Lakes from toxic algae Video link: https://www.youtube.com/watch?v=b6JzL4NG26k Photo: Algal bloom in Pelee Island in the southeast of Lake Erie Photo Credit: Tom Archer / Michigan Sea Grant (www.miseagrant.umich.edu) © PBS NewsHour
impacts tend to be fundamentally "non-commensurable", that is, it is hard to find a common measure. Comparing health, ecosystem and climate costs is like trying to compare apples and oranges. The available estimates, based on the willingness of people to reduce the risks of N_r pollution, or estimates of costs to ecosystems and healthcare services, are nevertheless informative and indicate a global cost of around US\$340 billion to US\$3,400 billion annually.¹¹ A much simpler calculation, however, can be even more powerful. Globally, around 200 million tonnes of N_r resource is lost to the environment per year as N_r and N₂. ^{11,28} If we multiply this by a nominal fertilizer price of US\$1 per kg N, then the total amounts to a cash loss of around US\$200 billion per year. This represents a strong motivation for action. This message is also relevant for areas with too little N_r, such as sub-Saharan Africa, where reducing N_r pollution would help limited available N_r sources to go further in supporting food production. ³¹ The conversion of N_r compounds back to N₂ (termed "denitrification") does not provide a safe way to avoid N_r pollution. Rather, it implies a need for fresh N_r inputs, tending to increase pollution. Indeed, all N₂ and N_r losses need to be reduced if economy-wide nitrogen use efficiency (NUE) is to be increased. Algal bloom (shown in milky green) in the west of Lake Erie between Canada and the United States on 3 August 2014. Lake Erie's frequent algal blooms are caused by nitrogen and phosphorus loading from agricultural runoff of fertilizers and manure, municipal wastewater effluent and atmospheric deposition. Photo credit: Jeff Schmaltz / NASA Goddard Space Flight Center ### Video: Human fingerprint on global air quality Video link: https://www.youtube.com/watch?time_continue=7&v=aMnDoXuTGS4 Photo credit: Doin / Shutterstock.com © NASA Goddard Space Flight Center # Fossil fuel combustions in the transport, energy and industrial sectors The transport sector contributes to more than 65% of NO_x emissions Fossil fuel combustion is responsible for 13% of the anthropogenic fixation of N₂ to N_r ### Fertilizer manufacture Fertilizer manufacture accounts for 63% of the anthropogenic fixation of N₂ to N₂ # Biological nitrogen fixation in crop cultivation In nature, N₂ can be converted into N, through lightning and biological nitrogen fixation by nitrogen-fixing bacteria N_r can also be biologically converted back to N₂ through the **denitrification process** by anaerobic bacteria. These natural processes keep a balanced cycle of nitrogen, but increased **cultivation of nitrogen-fixing crops** such as legumes has significantly added N_r inputs and losses into the environment. Biological nitrogen fixation in crop production is responsible for 24% of the conversion of N, into N, ### Waste In addition to the food production and combustion of fossil fuels being key to mitigating N, emissions, the role of waste management is also significant in preventing more N, from cascading through the environment Sewage, wastewater and food waste contain proteins. About 16% of protein is nitrogen Unlike sewage and wastewater, a large amount of **food waste is avoidable** Cereals, fruits, vegetables, roots and tubers make up the largest volumes of food losses and waste Every year about 1/3 of the food produced globally for human consumption is lost or wasted ### Nitrogen Oxides, NO,, affect urban air quality. Acute and chronic exposures to NO, are linked to respiratory and cardiovascular diseases and mortality. Children, the elderly and persons with asthma are vulnerable to NO₃. **Nitrous** Oxide N₂O is a greenhouse gas - 300 times more potent than CO₃. It also damages the ozone layer 80% of global Ammonia, NH₃, husbandry Nearly 80% of anthropogenic N₂O emissions come from agriculture **78**% of air is N. # The Nitrogen Cascade Nitrogen is essential for every living organism. It is part of DNA, amino acids, proteins, chlorophylls, enzymes, vitamins and many other organic compounds. N₂ is abundant but metabolically unusable by living organisms except for some microbes. To make nitrogen usable, N, must be converted into other forms of nitrogen or reactive nitrogen, N₂. emission comes from human activities, largely fertilizer applications and **animal** Ammonia and nitric acid react to form ammonium nitrate in particulate matter, increasing risks of respiratory and heart disease N₂ emissions can mix with rain to create nitric acid rain Nitrate, NO, from farming can leach down through soils into groundwater, affecting the quality of **drinking water** supplies and posing significant risk to human health 50% of nitrogen fertilizers added to farm fields ends up as pollution, or is wasted by denitrification back to N₂ In 2016 the world used 105 million metric tons of nitrogen fertilizers, or the equivalent to 4.2 million truckloads of fertilizers Long-term application of ammonium-based fertilizers causes soil to become acidic. negatively affecting crop production Ammonia pollution cause eutrophication, soil acidification and direct toxicity in organisms, reducing species richness and diversity promotes eutrophication, leading to harmful algal blooms, dead zones and biodiversity loss in freshwater and marine environments N, enrichment # Policy fragmentation and circular economy solutions Just as nitrogen science has become fragmented between environmental compartments and N_r forms, the same is true of nitrogen policies. The impacts of N_r cross multiple policy domains, such as air pollution, climate, freshwater and marine policy, biodiversity, health and food security. While this fragmentation is widely seen in the domestic policies of many countries, it is equally apparent in the Sustainable Development Goals (SDGs). Examination of the SDGs and the underlying indicators shows that nitrogen is relevant almost everywhere, but almost equally invisible. Only in the proposed indicator for SDG 14.1 on life below water is a nitrogen-related indicator currently being developed.³² Proposals to include NUE or nitrogen losses in the set of SDG indicators have not been adopted thus far.^{20,33} The consequences of this policy fragmentation across the nitrogen cycle can easily be seen in policy trade-offs. For example, policies to reduce NO₃ pollution of water in the European Union led to the prohibition of manure application to land in winter "closed periods". However, this led to an increase in spring-summer manure application, which in turn resulted in an increased peak in atmospheric ammonia concentrations.34 This temporal effect was only partly avoided in a few EU countries, by requiring low NH, emission application of manure.³⁵ Another example concerns the recommendation to bring cattle indoors to reduce climate-relevant emissions of N₂O. However, even with the best technical measures to moderate emissions, this would generally lead to increased NH₃ emissions.³⁶ Such trade-offs are also relevant for combustion sources. For example, the introduction of catalysts to reduce NO_x emissions in the 1990s increased N₂O and NH₃ emissions. These examples illustrate the urgent need to bring nitrogen science and policies together across multiple threats. 11,30,37 For example, the Chinese Government's 2015 "Action Plan for the Zero Increase of Fertilizer Use" aimed to prevent the growth in synthetic fertilizer use by 2020 without reducing food production, which would limit all forms of N_r pollution. It has been suggested that a next step should focus on socioeconomic barriers associated with farm size, innovation and information transfer. 38 ### Nitrogen, nutrients and the circular economy The Circular Economy Package adopted by the European Union in 2015 aims to maximize the efficiency of resource use in all steps of the value chain - production, consumption, waste management and recycling of secondary raw materials. 42,43 The plan recognizes the management and trade of organic and waste-based fertilizers as key in the recovery and recycling of bionutrients, such as nitrogen and phosphorus, back in the EU's economy. The new regulation encourages the sustainable and innovative production of organic fertilizers using domestically available bio-waste, animal by-products such as dried or digested manure, and other agricultural residues. Currently, only 5 per cent of organic waste material is recycled and applied as fertilizer within the EU. Enabling free cross-border movement of the bio-based fertilizers would lead to the creation of a new market space and supply chain for secondary raw materials within the EU. It is estimated that around 120,000 jobs would be created as a result. The recovery of nitrogen from bio-waste is expected to reduce or substitute the need for synthetic or inorganic nitrogen fertilizers, the production of which has high carbon and energy footprints. At the same time, this will further help to reduce losses of reactive nitrogen into the environment. Mobilization of the circular economy for nitrogen and other nutrients starts on farms, where reducing losses allows a more effective delivery of nutrients to support crop growth. A major need here is the provision of practical tools to guide farmers on reducing nitrogen inputs to account for reduced nitrogen pollution losses, achieved by implementing mitigation methods. These should be supported by appropriate soil testing to give farmers confidence in fine-tuning nutrient levels. However, there is also massive potential for scaling up reuse of nitrogen and other nutrients for the production of value-added, marketable products. Just as major investment is transforming society for a "low-carbon economy" (e.g. through renewable energy sources), the value of nitrogen implies a major economic opportunity through investment toward a "nitrogen circular economy". Regional consumptions of all types of nitrogen fertilizers in 1980 and 2016 (in million metric tonnes) It is also
easy to envisage transforming the nitrogen cycle in agriculture into a model of the circular economy for nitrogen. Here improvements in efficiency and reduced losses from fertilizers, biological nitrogen fixation, urine and dung allow more of the fresh nitrogen to reach intended food and bioenergy products. At the same time, reprocessing of livestock and human excreta into new fertilizers offers the opportunity to market recycled fertilizer products. The situation has been very different when it comes to combustion sources of NO_{χ} , since all available technologies, for instance, catalytic and non-catalytic reduction, focus on denitrification of NO_{χ} back to N_2 . Yet this represents a massive loss of resources. Multiplying global NO_{χ} emissions by the fertilizer price of N_{γ} would give an annual resource of US\$50 billion globally, pointing to the need for technologies to recapture NO_{χ} as $NO_{\chi}^{-1.1,39}$ In India, a financial perspective also informs the government's policy from 2016 requiring all urea fertilizer to be coated with neem oil, in order to reduce both environmental losses of N, and financial leakage of the subsidy to non-agricultural urea applications. The same principle underlies the Indian Prime Minister's call in November 2017 for farmers to halve fertilizer use by 2020, as well as governmental backing for Zero Budget Natural Farming (ZBNF) in some Indian states. The ZBNF movement focuses on avoiding costly external inputs of fertilizers and pesticides, helping farmers avoid debt, while promoting organic opportunities to improve soil organic matter, soil biology and fertility. In Andra Pradesh, a rapid upscaling of ZBNF to thousands of enthusiastic farmers is being supported by partnership between BNP Paribas, United Nations Environment Programme (UNEP) and the World Agroforestry Centre ICRAF, through the Sustainable India Finance Facility (SIFF). This innovative approach is based on loans to support investment and expansion being paid back by the government, since much less fertilizer subsidy will be needed when the fertilizer use reduces. 40,41 # Towards a holistic international approach for nitrogen The encouraging news is that a few countries are piloting more integrated approaches to nitrogen management. For example, Germany quickly responded to the European Nitrogen Assessment by working on an integrated nitrogen strategy.^{23,44} The difficulty for many countries is that a response to address nitrogen threats is split across multiple ministries, making it difficult to coordinate action. For example, in Brazil, agriculture is still expanding over large areas and the need for better decoupling of crop and animal production with environmental impacts has not been expressly addressed.⁴⁵ Internationally, the transboundary impacts of N_r also require clear legislation and policy actions. The members of the International Nitrogen Initiative (INI) have given considerable thought to these challenges. The first step has been to work with the United Nations Environment Programme to establish a coordinated approach to scientific support for international policy development, in the form of the "International Nitrogen Management System" (INMS). With the support of the Global Environment Facility and 80 partner organisations, INMS is developing guidance on the management of nitrogen, the integration of flows Video Link: https://www.youtube.com/watch?v=07P_wXTTusl Photo credit: gillmar / Shutterstock.com © European Union Video: Why fertilizer matters to the environment and your bottom line Video Link: https://www.youtube.com/watch?v=5TzzPOy1T3g Photo credit: Visual Generation / Shutterstock.com © Environmental Defense Fund and impacts, cost-benefit valuation, and future nitrogen scenarios. INMS is also developing regional multi-country demonstrations to show how holistic nitrogen management can help. A key outcome will be the first Global Nitrogen Assessment, due for publication in 2022. The next challenge is to develop a more coherent policy framework for the nitrogen cycle. The need for this can clearly be seen in the multitude of the United Nations Environment Assembly resolutions relevant to nitrogen: 2/6 (Paris Agreement), 2/7 (Chemicals & Waste), 2/8 (Sustainable Consumption & Production), 2/9 (Food Waste), 2/10 (Oceans), 2/12 (Coral Reefs), 2/24 (Land Degradation), 3/4 (Environment & Health), 3/6 (Soil), 3/8 (Air Quality) and 3/10 (Water Pollution). 46,47 The point is well made by Resolution 3/8, which encourages governments "to take advantage of synergistic effects of efficient nitrogen management on reducing air, marine and water pollution". Recent discussions in the scientific and policy communities have explored how to coordinate nitrogen policy engagement more effectively.⁴⁸ Some possibilities include: Option 1: Nitrogen fragmentation across policy frameworks – the status quo Option 2: Nitrogen leadership under one existing policy framework. This provides a challenge to the mandate of each since existing Multilateral Environmental Agreements (MEAs) address only parts of the challenge. Option 3: A new international convention to address the nitrogen challenge. There is currently little readiness for this approach. Option 4: An "Inter-Convention Nitrogen Coordination Mechanism", providing an intergovernmental forum for interinstitutional cooperation on nitrogen, perhaps under the mandate of the United Nations Environment Assembly. At present the Coordination Mechanism is lacking, which limits the extent to which the existing MEAs learn from each other, while also being inefficient in requiring that INMS work individually with multiple MEAs. The Coordination Mechanism would serve to actively engage Member States and relevant MEAs. The Major Groups and Stakeholders to the United Nations Environment Programme already facilitate involvement of business and civil society. It should be noted that Option 4 remains just that – an option. It is for national governments to discuss which approach would be the most agile, efficient and cost-effective. Nevertheless, this discussion points to another benefit. It is becoming increasingly obvious that global society needs a holistic approach for nitrogen science and policy. First, the multi-source, multi-sector perspective allows synergies and trade-offs to be considered. This would benefit agriculture and industry by providing a more coherent basis for business decision-making. Secondly, the holistic approach provides the foundation to develop the circular economy perspective that is vital to mobilizing change. In addition to these, such an approach for nitrogen becomes an illustration of how future environmental policy could coordinate more effectively between issues. As the United Nations Environment Programme works towards its strategy for a "Pollution-Free Planet", the lessons are likely to be all the more important across the realms of interacting pollution issues. ### Inter-convention Nitrogen Coordination Mechanism Video Link: https://www.youtube.com/watch?v=y0lG5mOWyAs Photo credit: Mark Sutton © CAFREtv ### References - United Nations Environment Programme (2014). UNEP Year Book 2014. Nairobi. http://wedocs.unep.org/handle/20.500.11822/9240 - Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D.G. et al. (2008). Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893 –897. https://doi.org/10.1126/science.1150369 - Voss, M., Bange, H.W., Dippner, J.W., Middelburg, J.J., Montoya, J.P. and Ward, B. (2013). The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. *Philosophical Transactions of the Royal Society B: Biological Sciences* 368, 20130121–20130121. https://doi. org/10.1098/rstb.2013.0121 - Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P. van Grinsven, H. and Grizzetti, B. (eds.) (2011). The European Nitrogen Assessment. Cambridge, UK: Cambridge University Press. http://www.nine-esf. org/node/360/ENA-Book.html - Pearce, F. (2018). Can the world find solutions to the nitrogen pollution crisis? Yale Environment 360, 6 February. http://e360.yale.edu/features/can-theworld-find-solutions-to-the-nitrogen-pollution-crisis - Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z. et al. (2013). Enhanced nitrogen deposition over China. Nature 494, 459-462. http://dx.doi. org/10.1038/nature11917 - Fowler, D., Steadman, C.E., Stevenson, D., Coyle, M. Rees, R.M. Skiba, U.M. et al. (2015). Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics 15, 13849-13893. https://doi.org/10.5194/acp-15-13849-2015 - Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D. and Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. *Nature* 525, 367–371. https://doi.org/10.1038/nature15371 - United Nations Environment Programme (2013). Drawing Down N₂O to Protect Climate and the Ozone Layer: A UNEP Synthesis Report. Alcamo, J., Leonard, S.A., Ravishankara, A.R. and Sutton, M.A. (eds.) Nairobi. http://wedocs.unep.org/ handle/20.500.11822/8489 - Suddick, E.C., Whitney, P., Townsend, A.R. and Davidson, E.A. (2012). The role of nitrogen in climate change and the impacts of nitrogen-climate interactions in the United States: foreword to thematic issue. *Biogeochemistry* 114, 1–10. https://doi.org/10.1007/s10533-012-9795-z - Sutton, M.A., Bleeker, A., Howard, C.M., Bekunda, M., Grizzetti, B., de Vries, W. et al. (2013). Our nutrient world: the challenge to produce more food and energy with less pollution. Edinburgh, UK: NERC/Centre for Ecology & Hydrology. http://nora.nerc.ac.uk/id/eprint/500700/ - Abrol, Y.P., Adhya, T.K., Aneja, V.P., Raghuram, N., Pathak, H., Kulshrestha, U., Sharma, C. and Singh, B. (eds.) (2017). The Indian Nitrogen Assessment: Sources of Reactive Nitrogen, Environmental and
Climate Effects, Management Options, and Policies. UK: Elsevier. https://www.sciencedirect. com/book/9780128118368/the-indian-nitrogen-assessment - Van Grinsven, H.J.M., Holland, M., Jacobsen, B.H., Klimont, Z., Sutton, M.A. and Willems, W.J. (2013). Costs and benefits of nitrogen for Europe and implications for mitigation. *Environmental Science & Technology* 47, 3571-3579. https://pubs.acs.org/doi/10.1021/es303804q - Organisation for Economic Cooperation and Development (2018). Human Acceleration of the Nitrogen Cycle: Managing Risk and Uncertainty. Paris. https://doi.org/10.1787/9789264307438-en - Brunekreef, B., Harrison, R.M., Künzli, N., Querol, X., Sutton, M.A., Heederik, D.J.J. et al. (2015) Reducing the health effect of particles from agriculture. Lancet Respiratory Medicine 3(11), 831-832. https://doi.org/10.1016/S2213-2600(15)00413-0 - Westhoek, H., Lesschen, J.P., Rood, T., Wagner, S., De Marco, A., Murphy-Bokern, D. et al. (2014). Food choices, health and environment: Effects of cutting Europe's meat and dairy intake. Global Environmental Change 26, 196-205. https://doi.org/10.1016/j.gloenvcha.2014.02.004 - Westhoek, H., Lesschen, J.P., Rood, T., Leip, A., Wagner, S., De Marco, A. et al. (2015). Nitrogen on the Table: The influence of food choices on nitrogen emissions and the European environment. European Nitrogen Assessment Special Report on Nitrogen and Food. UK: Centre for Ecology & Hydrology.. https://www.pbl. nl/sites/default/files/cms/publicaties/Nitrogen_on_the_Table_Report_WEB. pdf - Springmann, M., Clark, M., Mason-D'Croz, D., Wiebe, K., Bodirsky, B.J., Lassaletta, L. et al. (2018). Options for keeping the food system within environmental limits. Nature 562, 519-525. https://doi.org/10.1038/s41586-018-0594-0 - Brownlie W.J., Howard, C.M., Pasda, G., Nave, B., Zerulla, W. and Sutton, M.A. (2015). Developing a global perspective on improving agricultural nitrogen use. *Environmental Development* 15, 145-151. https://doi.org/10.1016/j. envdev.2015.05.002 - EU Nitrogen Expert Panel (2015). Nitrogen Use Efficiency (NUE) an indicator for the utilization of nitrogen in food systems. Wageningen, NL: Wageningen University. http://www.eunep.com/wp-content/uploads/2017/03/N-ExpertPanel-NUE-Session-1.pdf - Sutton, M.A., Howard, C.M., Brownlie, W.J., Skiba, U., Hicks, K.W., Winiwarter, W. et al. (2017). The European Nitrogen Assessment 6 years after: What was the outcome and what are the future research challenges? In Innovative Solutions for Sustainable Management of Nitrogen. Dalgaard, T. et al (eds). Aarhus, Denmark, 25-28 June. Aarhus, DK: Aarhus University and the dNmark Research Alliance. http://sustainablenconference.dnmark.org/wp-content/uploads/2017/06/JYC_Final_Book-of-abstracts160617.pdf - Reis, S., Bekunda, M. Howard, C.M., Karanja, N. Winiwarter, W., Yan, X. et al. (2016). Synthesis and review: Tackling the nitrogen management challenge: from global to local scales. Environmental Research Letters 11, 120205. http://iopscience.iop.org/article/10.1088/1748-9326/11/12/120205/meta - Umweltbundesamt (2015). Reactive Nitrogen in Germany: Causes and effects measures and recommendations. Dessau-Roßlau: The German Environment Agency (Umweltbundesamt). https://www.umweltbundesamt.de/en/publikationen/reactive-nitrogen-in-germany - Tomich T.P., Brodt, S.B., Dahlgren, R.A. and Scow, K.M. (eds.) (2016). Davis, CA: University of California Press. http://asi.ucdavis.edu/programs/sarep/research-initiatives/are/nutrient-mgmt/california-nitrogen-assessment - Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R. et al. (2008). Transformation of the Nitrogen Cycle: Recent Trends, Questions and Potential Solutions. Science 320, 889-892. https://doi.org/10.1126/science.1136674 - Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z. and Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. *Nature Geoscience* 1, 636-639. https://doi.org/10.1038/ngeo325 - Davidson, E.A., Davidson, M.B., David, J.N., Galloway, C.L., Goodale, R., Haeuber, J.A. . (2012). Excess nitrogen in the U.S. environment: trends, risks, and solutions. 15. The Ecological Society of America, Washington. http://www.esa. org/esa/wp-content/uploads/2013/03/issuesinecology15.pdf - Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S. (2013). The global nitrogen cycle of the twenty-first century. *Philosophical Transactions of the Royal Society, B.* 368, 2130164. http://dx.doi.org/10.1098/rstb.2013.0164 - Bleeker, A., Sutton, M., Winiwarter, W. and Leip, A. (2013) Economy Wide Nitrogen Balances and Indicators: Concept and Methodology. OECD, Environment Directorate, Environment Policy Committee, Working Party on Environmental Information, Paris, France ENV/EPOC/WPEI(2012)4/REV1. Paris. http://inms.iwlearn.org/inms-meeting-lisbon/NBalancesandIndicators.pdf - Sutton, M.A., Oenema, O., Erisman, J.W., Leip, A., van Grinsven, H. and Winiwarter, W. (2011). Too much of a good thing. *Nature* 472, 159-161. https://doi.org/10.1038/472159a - Masso, C., Baijukya, F., Ebanyat, P., Bouaziz, S., Wendt, J., Bekunda, M. et al. (2017). Dilemma of nitrogen management for future food security in sub-Saharan Africa a review. Soil Research 55(6), 425-434. https://doi.org/10.1071/SR16332 - United Nations Statistic Division (2018). Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development. New York. A/RES/71/313 E/CN.3/2018/2. https://unstats.un.org/sdgs/indicators/indicators-list/ - Zhang, X., Davidson, E.A., Mauzerall, D.L., Searchinger, T.D., Dumas, P. and Shen, Y. (2015). Managing nitrogen for sustainable development. *Nature* 528, 51-59. https://doi.org/10.1038/nature15743 - Sutton, M.A., Reis, S., Riddick, S.N., Dragosits, U., Nemitz, E., Theobald, M.R. et al. (2013). Toward a climate-dependent paradigm of ammonia emission & deposition. Phil. Trans. Roy. Soc. (Ser. B) 368, 20130166. http://dx.doi.org/10.1098/rstb.2013.0166 - Van Grinsven, H.J., Tiktak, A. and Rougoor, C.W. (2016). Evaluation of the Dutch implementation of the nitrates directive, the water framework directive and the national emission ceilings directive. NJAS-Wageningen Journal of Life Sciences 78, 69-84. https://doi.org/10.1016/j.njas.2016.03.010 - Bittman, S., Dedina, M., Howard C.M., Oenema, O. and Sutton, M.A. (eds.) (2014). Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen. Edinburgh: Centre for Ecology and Hydrology. http:// nora.nerc.ac.uk/id/eprint/510206/1/N510206CR.pdf - Gu, B.J., Ju, X.T., Chang, J., Ge, Y. and Vitousek, P.M. (2015). Integrated reactive nitrogen budgets and future trends in China. 112, 8792-8797. https://doi. org/10.1073/pnas.1510211112 - Ju, X.T., Gu, B.J., Wu, Y.Y. and Galloway, J.N. (2016). Reducing China's fertilizer use by increasing farm size. 41, 26-32. https://doi.org/10.1073/ pnas.1806645115 - Mangano E., Kahr, J., Wright, P.A. and Brandani, S. (2016). Accelerated degradation of MOFs under flue gas conditions. *Faraday Discussions*, 192. https://doi.org/10.1039/C6FD00045B - 40. Food and Agriculture Organization (2016). Zero Budget Natural Farming in India. Agroecology Knowledge HubTrends in BiosciencesCircular Economy Package: Questions & Answers. 2 December. http://europa.eu/rapid/pressrelease_MEMO-15-6204_en.htmClosing the loop An EU action plan for the Circular Economy.Communication from the Commission to the European Paliament, the Council, the European Economic and Social Committee and the Committee of the Regionshttps://www.eea.europa.eu/policy-documents/com-2015-0614-final. - Bishnoi, R. and Bhati, A. (2017) An Overview: Zero Budget Natural Farming. Trends in Biosciences 10(46), 9314-9316 - European Commission (2015). Circular Economy Package: Questions & Answers. 2 December. http://europa.eu/rapid/press-release_MEMO-15-6204_ en.htm - European Commission (2015). Closing the loop An EU action plan for the Circular Economy. Communication from the Commission to the European Paliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2015) 614 final. https://www.eea.europa. eu/policy-documents/com-2015-0614-final - Sachverständigenrat für Umweltfragen (2015). Nitrogen: Strategies for resolving an urgent environmental problem - Summary. Berlin. https://www.umweltrat. de/SharedDocs/Downloads/EN/02_Special_Reports/2012_2016/2015_01_ Nitrogen_Strategies_summary.html - Austin, A.T., Bustamante, M.M.C., Nardoto, G.B., Mitre, S.K., Perez, T., Ometto, J.P.H.B. et al. (2013). Latin America's Nitrogen Challenge. Science 340, 149. https://doi.org/10.1126/science.1231679 - United Nations Environment Programme (2018). Resolutions and Decisions: UNEA 2. Nairobi. http://web.unep.org/environmentassembly/resolutions-and-decisions-unea-2 - United Nations Environment Programme (2018). Documents: Third session of the UN Environment Assembly. Nairobi. http://web.unep.org/ environmentassembly/node/40741 - 48. Sutton, M. (2018). The global nitrogen challenge: a case of too much and too little nutrients. A presentation to the Committee of Permanent Representatives to the United Nations Environment Programme, 24 October 2018. http://wedocs.unep.org/bitstream/handle/20.500.11822/26379/Sutton%20Global%20Nitrogen%20Challenge%20%28UNEP%20CPR%20Oct%202018%29.pdf?sequence=24&isAllowed=y ### THE NITROGEN FIX: FROM NITROGEN CYCLE POLITION TO NITROGEN CIRCULAR ECONOMY ### **Graphic references** - Zhang, R., Tie, X. and Bond, D.W. (2002). Impacts of anthropogenic and natural NOx sources over the U.S. on tropospheric chemistry. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1505-1509. https://doi.org/10.1073/pnas.252763799 - FAO (2011). Global food losses and food waste Extent, causes and prevention. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/docrep/014/mb060e/mb060e00.pdf - Ussiri D., Lal R. (2013)
Global Sources of Nitrous Oxide. In: Soil Emission of Nitrous Oxide and its Mitigation. Springer, Dordrecht. https://doi. org/10.1007/978-94-007-5364-8 - IFA (2018). International Fertilizer Association database (IFASTAT). International Fertilizer Association, Paris. https://www.ifastat.org/ - Behera, S.N., Sharma, M., Aneja, V.P. and Balasubramanian, R. (2013). Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. *Environmental Science and Pollution Research*, 20(11), 8092-8131. https://doi.org/10.1007/s11356-013-2051-9 - Field, C.D., Dise, N.B., Payne, R.J., Britton, A.J., Emmett, B.A., Helliwell, R.C., Hughes, S, et al. 2014. The Role of Nitrogen Deposition in Widespread Plant Community Change Across Semi-natural Habitats. *Ecosystems*, 17, 864-877. https://doi.org/10.1007/s10021-014-9765-5 - Payne, R. J., N. B. Dise, C. J. Stevens, D. J. Gowing, and Begin Partners. 2013. 'Impact of Nitrogen Deposition at the Species Level'. Proceedings of the National Academy of Sciences, 110(3): 984–87. https://doi.org/10.1073/ pnas.1214299109 - Sheppard, L. J., Leith, I. D., Mizunuma, T., Cape, N., Crossley, A., Leeson, S., Sutton, M.A., Dijk, N. and Fowler, D. (2011). Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: evidence from a long-term field manipulation'. Global Change Biology, 17: 3589-3607. https://doi.org/10.1111/j.1365-2486.2011.02478.x