

INMS Component 3 Demonstration and verification at regional/national/local levels

Mark Sutton, Cargele Masso & the Demo Co-Leads

INMS Regions & Partners

• Country clusters: Major N sources, N flows, opportunities, NUE, barriers, sharing successes in country clusters

South Asia: India, Sri Lanka, Bangladesh, Nepal, Maldives

• N. Raghuram, Tapan Adhya & INI South Asia

East Asia: China, Japan (South Korea, Phillipines)

- Xiaoyuang Yan & Kentaro Hyashi, & Xiaotang Ju INI East Asia
- Lake Victoria Basin: Kenya, Uganda, Tanzania, Rwanda, Burundi
 - Cargele Masso & INI Africa

Latin America (La Plata): Brazil, Paraguay, Uruguay, Argentina, Bolivia

• Jean Ometto & INI Latin America

Black Sea: Diester, Prut & Lower Danube

• Lidiya Molychuk & Serge Medinets, EPN-EECCA & INI Europe

North America: Nooksak and Lower Fraser Valley, USA, Canada

• Jana Compton, Shabtai Bitman, Jill Baron

West Europe: Atlantic Coastal catchments (FR, ES, PT, UK, IE, BE, DE)

• Josette Garnier, Gilles Billen, Alberto Sanz and others.

INMS Component 3 Regional Demonstrations

Activity 3.1

Design common methodology & conduct regional demos to refine regional N, assessments and improve understanding of regional N cycle.

> Tasks 3.1.1 & 3.1.2 Examination of N flows by sector & pathway; inc improving access to data

Task 3.1.3 Identifying & quantifying major uncertainties and means to improve

Tasks 3.1.4 & 3.1.5 Agreeing key threat/benefit priorities with policy stakeholders, supported by CBA

Task 3.1.6 Relation to N performance indicators, in cooperation with global analysis

Task 3.1.7 Review of available options for mitigation/ better N management, co-benefits/trade-offs

Task 3.1.8 Profiling success stories, barriers to change, & demonstration of N joined up approach

Task 3.1.9 Contribution to scenarios development in cooperation with global analysis

Output 3.1

Four demonstration cases deliver conclusions refining approaches to regional assessments and improving understanding of regional N cycle : Case 1: Developing areas with excess N_r. (South Asia, East Asia, Latin America)

- Case 2: Developing areas with insufficient N_r. (East Africa)
- Case 3: Regions with transition economies. (East Europe)
- Case 4: Developed areas with excess N_r. (West Europe) [by regional co-finance]

Task Outputs 3.1.1 & 3.1.2 Main N flows quantified by source sector & pathway; better data access & understanding

Task Output 3.1.3 Quantification of major N source sectors with estimated uncertainties

Task Outputs 3.1.4 & 3.1.5 Key N benefits/threats quantified & regional priorities identified with policymakers & others

Task Output 3.1.6 Basis to compare regions in relation to agreed performance indicators

Task Output 3.1.7 Document on N mitign/mangnt options identifying win-wins & regional priority list of options

Task Output 3.1.8 Synthesis of current efforts with examples of how a 'full N approach' can help overcome barriers

Task Output 3.1.9 Global N scenarios informed by evidence from the regional demonstrations

Key Points for the INMS Demonstrations

- Consider the sequence of the demo stages
 - Which sources, which impacts, which measures, which barriers, which opportunities?
- Agree on the system boundaries
 - Which geographic scope?
 - Which time scales considered?
- Outputs expected
 - Demonstration Reports
 - Chapter in the International Nitrogen Assessment
 - Feed in to other INMS activities (e.g. indicators, scenarios, successes/barriers)

Challenges and Questions for East Africa Demonstration

- *"Challenges and opportunities for developing areas with insufficient reactive nitrogen"*
- *"Challenges and opportunities for developing areas with excess reactive nitrogen*
- Limited access to quality data to accurately quantify N flows, benefits, and threats

Key Questions

- Can nitrogen inputs be increased in the region without exacerbating nitrogen pollution threats?
- How do the different sources of N input fit together most effectively?

East Africa Demonstration Region

Henao & Banante

Population Density (persons/km²)

Countries, issues, partnerships

Action areas

Industrial and municipal Sewage Farming systems

Atmospheric deposition

Big questions for South Asia

- Have key effects been missed impacts on terrestrial biodiversity?
- Is there really no impact on eutrophication in the Bay of Bengal?
- How much does nitrogen pollution exacerbate loss of Coral Reefs?
- What policy lessons are offered by the comparison between countries?

Why South Asia? A global hotspot for nitrogen losses

Global ammonia column (mg m⁻²) from IASI satellite Clarisse et al., *Nature Geoscience*

What is driving the atmospheric NH₃ differences between South and East Asia?

Andi Moring, Massimo Vieno et al.

Where is the fertilizer?

Ganges Narmada Mahanadi Tapi Godavari Fertilizer N Application (kg-N/km2/yr) 0 - 100 Krishna 00 - 200 200 - 300 300 - 500 500 - 1000 Cauvery 000 - 2000 2000 - 3000 3000 - 5000 5000 - 10000 10000

Modelled fertilizer application

Statistics on fertilizer use

\Rightarrow Improved methods for spatial distribution are needed

Denitrification (as N_2O)

9

8

7

6

5

4

3

2

1

0

Control (No N)

Prilled urea

Denitrification (kg N ha⁻¹)

Denitrification was higher in continuous flooded rice as compared to the intermittent flooding

Arti Bhatia, Niveta Jain, Renu Singh et al.

CON NUTROGEN EFFT

NHOLE CROP

SBWA + NCU = sensor based water application + neem coated urea; BF = biofertilizer

Ammonia volatilization

- LCC based Neem coated urea emitted highest NH₃
- 9.8 to 11.3 % of applied N was lost as ammonia

Arti Bhatia, Niveta Jain, Renu Singh et al.

Big questions for East Asia

- Global Nitrogen Hotspot: What is the scale of the major adverse impacts?
- Is there evidence of open ocean eutrophication from the atmosphere?
- Are some areas still pristine?
- What is the economic opportunity and lessons to be learned between countries? (China, Japan, S. Korea, Philippines)

Eutrophic & Hypoxic Coastal Areas of India

Risk categories for Large Marine Ecosystem (LMEs)

Index of Coastal Eutrophication Potential

April 30, 2017, Beijing: China contribution

Activity	Person
Task 3.1.1 & 3.1.2: Examination of N flows by source sector & loss pathway; inc improving access to data	Authors of book: Guidelines for Nitrogen flow Analysis in China
Task 3.1.3: Identifying & quantifying major uncertainties and means to improve	Authors of book: <i>Guidelines for Nitrogen flow</i> <i>Analysis in China</i> , uncertainty analysis by Feng Zhou and Yongqiu xia
Task 3.1.4 & 3.1.5: Identifying & agreeing key threat/benefit priorities with policy stakeholders, supported by CBA	Baojing Gu
Task 3.1.6: Description in relation to N performance indicators, in co-operation with global analysis	Xiaotang Ju
Task 3.1.7: Review of available options for mitigation/better N management, co- benefits/trade-offs	Lin Ma and Xuejun Liu
Task 3.1.8: Profiling success stories, barriers to change, and demonstration of N joined up approach	Xiaoyuan Yan
Task 3.1.9: Contribution to scenario development in cooperation with global analysis	Feng Zhou

First East Asia N conference Oct. 20-22, 2017, Nanjing

INMS East Asia China Japan South Korea Philippines

Guidelines for nitrogen flow analysis in China (中国氮素流动分析方法指南)

Publish by August 2018

活性氮流动图示。BNF, 生物固氮; Org-N, 有机氮; Par-N,颗粒态氮。氮流动不仅存在于功能群之间, 而且也存在于功能群内部不同系统之间

Chapters of book

1.	Concept and definition	日录		
2.	Nitrogen flow in terrestrial ecosystems			
3.	Uncertainty analysis	前言、蔡、		
4.	Croplands	1. 基本概念和定义。		
5.	Grasslands	2. 陆地生态系统飘素流动基本过程分析, 谷+幕。		
6.	Forest	3. 不确定性分析, 谷+蔡。		
7.	Livestock	4. 农田系统 CL, 遆.		
8.	Aquaculture	5. 草地系统 GL, 遆。		
9.	Industry	6. 森林系统 FR, 递.		
10	Urban Greenland(UG)	7. 禽畜养殖系统 LS, 高,		
11	Human	8. 水产养殖系统 AQ, 高。 I		
12	Doot	9. 城市绿地系统 UG, 高-		
12.		10. 人类系统 HM, 高,		
13.	Solid waste treatment	11. 宠物系统 PT, 谷。		
14.	Sewage treatment	12. 工业过程与能源系统,高。		
15.	Surface water	13. 固体废弃物处理系统 GT, 高-		
16	Underground water	14. 污水处理系统 WT, 谷,		
17		15. 地表水系统 SW, 谷+		
1/.		16. 地下水系统 GW, 谷,		
18.	Atmosphere(GS)	17. 近海海域,高。		
19.	Case study	18. 大气系统 GS,谷,		
		19. 案例(全国尺度),谷.		

2nd NCEIEA (East Asian N Conference)

- NCEIEA: International Conference of Nitrogen Cycling and its Environmental Impacts in East Asia
- Date: 19 Mon. 22 Thr. November 2018
- Venue: Tsukuba, Japan (adjacent to Tokyo)

- Organizers (under discussion): National Agriculture and Food Research Organization (NARO), Japanese Society of Soil Science and Plant Nutrition (JSSPN), INI-East Asia
- Hosts (hope): Towards INMS, other national institutes, agencies, and academic societies of Japan

Big questions for Europe

- What are the major uncertainties and gaps?
- Some N Emissions have decreased do we see any evidence of recovery?
- What lessons can be learned from those countries that already took action?
- Which were the most effective measures?
- Is *dietary change* going to be needed to meet sustainable development goals?

Key Objectives for Atlantic Demo

- Describe and model the current N flows through agricultural, atmospheric and hydrological systems of a regional territory along its land-sea continuum, and their major controlling factors
- **Establish and assess various future management** scenarios for reducing coastal eutrophication/hypoxia (nutrients excess and disequilibrium), and pollution of soils, waters, and air in the human environnement associated to reactive N (NH₃, NO_x, N₂O and NO₃⁻), Si and P.
- **Elaborate prospective (not prescriptive) scenarios**, on the basis of emerging "weak signals" (organic food, circular economy, reconnection of crop/livestock, sobriety in way of life, ...)

Embedded geographical scales

Adressed Issues

Critical

Potentially critical

Not critical

N management issues		Tagus	Seine
Water issues	Low water periods		
	Reservoirs		
	Point source pollution		
	N retention		
Agricultural issues	Crop mineral fertilisation		
	Livestock and Crop manure fertilization		
	Irrigation		
Atmospheric emissions &	Ammonia		
pollution	Nitrous oxide		
	Ozone		
Coastal Potential Eutrophication	N:P:Si nutrient deliveries vs. upwelling		

Learning from key global regions

- What are the stories that help the public to engage in "why care about nitrogen"?
- Have some nitrogen threats been forgotten?
- Can a joined up nitrogen approach help overcome the barriers?
- How can country clusters working with regional intergovernmental bodies help mobilize solutions.