

Activity 1.4: development of approaches for N threatbenefit valuation April 2018

Hans van Grinsven, Baojing Gu

Component 1

Tools for understanding & managing the global N cycle *Baron / van Grinsven*

Activity 1.1 Devlpt of N system indicators Winiwarter / Clark

Activity 1.2

Devlpt of N threat assessment methodology Baron / Shibata

Activity 1.3 Devlpt methodology N fluxes and distribution Beally/Hicks

Activity 1.4 Devlpt approaches N threat-benefit valuation Van Grinsven / Baojing Gu

Activity 1.5

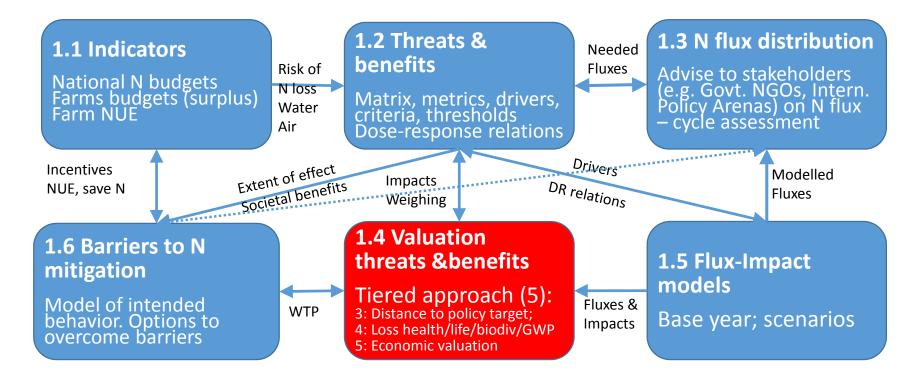
Flux-impact path models for assessment, scenarios (de Vries / Winiwarter)

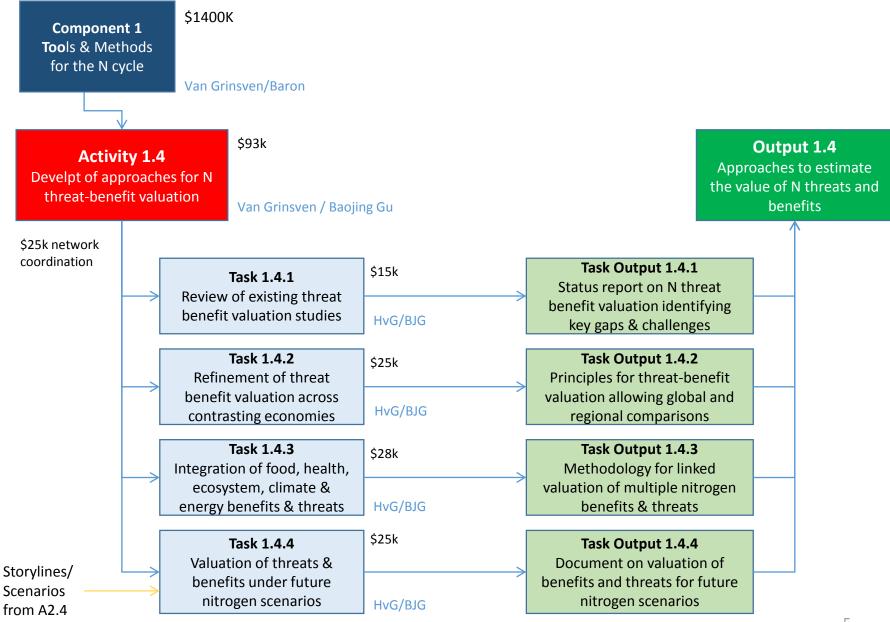
Activity 1.6

Examination barriers to better N management Masso/Cordovil

Summary of progress

- Teams formed
- Work plans written
- First deliverables
- Report outlines
- Some tuning issues
- No contracts
- Some delays


Some general concerns


- Commitment and engagement
 - new INMS team members; busy experts
 - Year 1 and 1st meeting for team building
- Linkage (time and content) to other activities
 - Balance between delivering methods and results
- Overhead for communication, administration
- Delayed contracts
- Budget flexibility reserve funds

C1 – Linkage and interaction

Activity 1.4

Activity 1.4: development of approaches for N threat-benefit valuation	1	7	20)18			20)19			20	20			20)21	
		Q 4	Q 1	Q 2	Q 3												
Task 1.4.1 Review of existing threat benefit valuation studies				R													
Task 1.4.2 Refinement of threat benefit valuation across contrasting economies							R										
Task 1.4.3 Integration of food, health, ecosystem, climate & energy benefits & threats							М			R							
Task 1.4.4 Valuation of threats & benefits under future nitrogen scenarios															R		
Monitoring and Evaluation						R				R				R			R

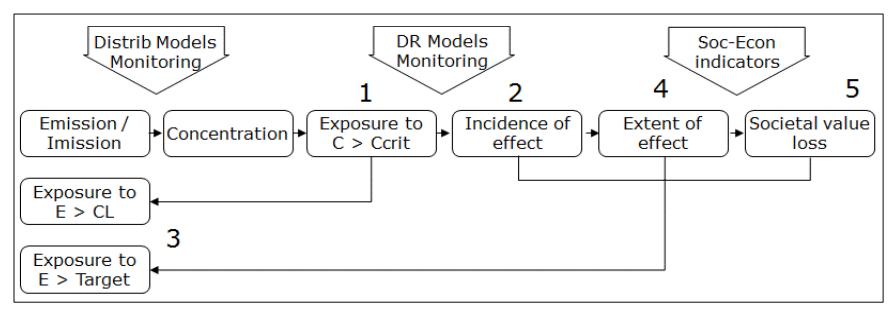
Progress Q4-17; Q1-18

- Core-team; multidisciplenary; global coverage
- Agreed workplan
- Agreed Outline for Status Report (Tasks 1, 2 and 3)
 - Propose to write one report; with partial deliveries per task
 - Joint high level paper results 1.2&1.4
- First "In Kind" and "In cash" contributions and new activities for global valuation
 - INPE-GPNM: CBA Case studie Pantanal Brasil
 - Univ Waterloo: Global Meta Analysis Aquatic impacts
 - Zhejang Univ: China Framework paper
 - PBL: intern started CBA Lake Victoria Basin
- Cooperation and joint workshop with A1.2 in Fort Collins (Sept. 10-13)

INMS activity 1.4 Core team

Names	Region	Task and Expertise
• Baojing Gu	China	Co chair; integrated assessment
Jane Compton	USA	Ecosystem Service (ESS) valuation
• Roy Brouwer	Canada	Valuation theory, WTP surveys; meta analysis; valuation impacts water
Berit HaslerHeini Ahtiainen	Denmark Finland	Valuation Baltic (Marine); WTP surveys
Hans van Grinsven	Netherlands	Chair: EU Cost Benefit; Unit cost method; Nitrate and health
• Arjan Ruijs	Netherlands	Environmental Economics; ESS valuation; CBA NEC
 Fredrick Mhina Mngube Dieudonne Hatungimana 	Africa	Demo Africa; Lake Victoria Basin. WTP Food security
Felipe PachecoJean Ometto	Brasil	Demo Latin America; Pantanal costing case study
Biswajit MondalTapan Adhyas	India	Demo South Asia; WTP Food security
Niels-Axel Braathen	OECD	Health costs; valuation theory
Mike Holland	UK-EU	ENA; ECLAIRE; Valuation EU health impacts, cost air pollution;
Laurence Jones	UK-EU	ENA; ECLAIRE; Valuation impacts ESS and impacts terrestrial ecosystems
Nicola Beaumont	UK-EU	Valuation of marine ESS
Tai McClellan MaazTom Bruulsma	IPNI	Benefits for agriculture and food

12 (+ 6) core members; multidisplinary; 5 continents; 13 male;


Priority issues for impact valuation in INMS 1.4

- 1. N runoff and marine eutrophication/HABs (UNEP GEF),
- 2. NH₃ and NOx emission to air and human health loss,
- 3. N fertilizer use and regional food security-sufficiency,
- 4. N deposition and C sequestration (Climate benefit),
- 5. N deposition and terrestrial eutrophication
- 6. Proxies for translating results EU, US to rest of world (GDP, population density, land cover)

Five Tier approach

- Tier 3: Distance to Policy targets
- Tier 4: Aggregated expression of N impacts
 - Disability Adjusted Life Years (DALY) for health;
 - Mean Species Abundance (MSA) for ecosystems;
 - Global Warming Potential (GWP) for climate
 - Food benefits: ratio of supply/demand of calories or protein (SDGs)
- Tier 5: express DALY, MSA, GWP in "€\$£¥": communicates well but most contested

Workplan 2018-2019 Tasks 1.4.1, 1.4.2, 1.4.3

- INMS Wiki N valuation literature database and classification
- Review and report existing threat benefit valuation studies (Chapters 1-4): identify gaps and priorities (in F Collins)
- Refine/adjust Tier 4 and 5 approach for developing economies
 - Pantanal, Lake Victoria B (India)
 - Metrics for Food benefits
 - Proxies for extrapolation of EU, US results
- Fill acknowledged gaps for valuation for Marine and Terrestrial ecosystem impacts
- Harvest existing meta-analyses; define and commission new meta analysis

1.4 Report Valuation of N threats and benefits across contrasting economies.

(One report: First draft Ch 1-4 Sept, 2018; 80% version end, 2019)

- 1. Introduction (Grinsven and Gu)
- 2. Use for policy support and communication (Grinsven, Gu, Ruijs)
- 3. Principles of economic valuation of environmental pollution (Brouwer, Ruijs, OECD)
- 4. Status and review of current knowledge on valuation of impacts of N emissions (core team)
- 5. Case studies for developing economies (optional; Pantanal, L Victoria)
- 6. Proposed methodology for valuation of key N threats for contrasting economies (core team)
- 7. Guidelines for application impact valuation in Global Nassessment (base year, scenario)

3. Principles of economic valuation of environmental pollution (Brouwer, ...)

- Dose Impact relations (Gu)
 - Emission concentration
 - Exposure Impacts
- Valuation (Brouwer, Ruijs, Hassler)
- Proxies to extrapolate impact values from high to low income countries (Gu, Grinsven)
- Benefits for agro-food sector (Grinsven, Ruijs, IPNI)
- Human Health (Holland, Gu, OECD)
- Ecosystems (Compton, Hassler, Jones, Beaumont)
- Climate change (Ruijs, Grinsven)
- References

4. Status and review of current knowledge on valuation of impacts of N emissions

- Benefits for agro-food sector (Grinsven, OECD)
 - Farm sector
 - Agro-food sector
- Human health (Holland, Gu, OECD)
 - Air pollution
 - Water pollution (Grinsven)
 - Food security and healthy nutrition
- Ecosystems (Compton, Hassler, Jones)
 - Terrestrial (Jones)
 - Fresh water (Mngube)
 - Marine (Hassler, Beaumont)
 - Ecosystem services (Ruijs))
- Climate change (Ruijs, Grinsven)
 - ETS
 - Valuation of future Impacts
- References

Suggestions next steps

- Harvest available material
- Involvement new partners
- Dedicated research to fill gaps
 - Impacts and regions
- Appointment of task leads

Optional slides for topics

- Unit cost methods for valuation
- WTP
- Case studies
- N benefit for agriculture
- Impacts on terrestrial ecosystems
- Baltic
- Health impacts: recent finding for
 - NH3 and PM
 - Nitrate drinking water

Activity 1.4: development of approaches for N threat-benefit valuation	1	7	20)18			20)19			20	20			20	21	
		Q 4	Q 1	Q 2	Q 3												
Task 1.4.1 Review of existing threat benefit valuation studies				₽ M	w	R											
Task 1.4.2 Refinement of threat benefit valuation across contrasting economies					w		R										
Task 1.4.3 Integration of food, health, ecosystem, climate & energy benefits & threats					w		₩			R							
Task 1.4.4 Valuation of threats & benefits under future nitrogen scenarios															R		
Monitoring and Evaluation						R				R				R			R

Application of N cost – benefit assessments

"trick" to weigh and add up Nr emissions; External costing
 deal with multiple source-form-impact nature of N pollution
 N-CBA's published for EU, USA, India, China (N cost 1-4% GDP)

Examples of application

- 1. Communicate relevance of N pollution policy decision
- 2. Find optimum level of mitigation (incl. pollution swapping)
- 3. Find optimum level of N fertilization
- 4. Find optimum spatial configuration of N polluting activities
- 5. Translate external cost N pollution to price tag of diets / products

N policy making: weighting of competing claims on environment

- Conflict of values and interests for incomparable issues
- Prioritization is a societal/political process; never a fully objective process
- Integrated approach combines quantitative and qualitative assessment and stakeholder dialogues

Five Tier approach – five metrics

Tier 1: Exceedance of effect criteria for environmental emissions or quality

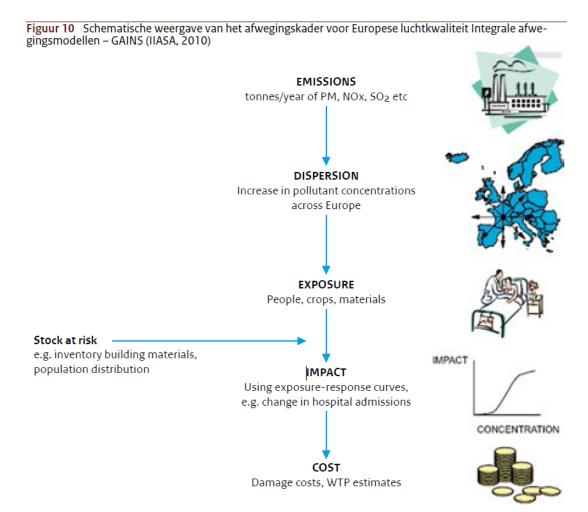
- Exceedance of air and water quality standards (MPR, NOEC, CL)
- Tier 2: Impacts of nitrogen pollution on health and environment
 - Incidence of respiratory illness, cancers, frequency and extent of harmful algal blooms, or effects on biodiversity or forest vitality
- Tier 3: Achievement of internationally or nationally agreed policy objectives
 - To show effect of policies or interventions; "Distance To Policy Target"

Activity 1.4 focus on Tiers more meaningful for society, general public

- **Tier 4**: Life expectancy, nature experience/recreation, ecosystem functioning, services
- **Tier 5**: Expression as loss or gain of prosperity or welfare; in economic or monetary units

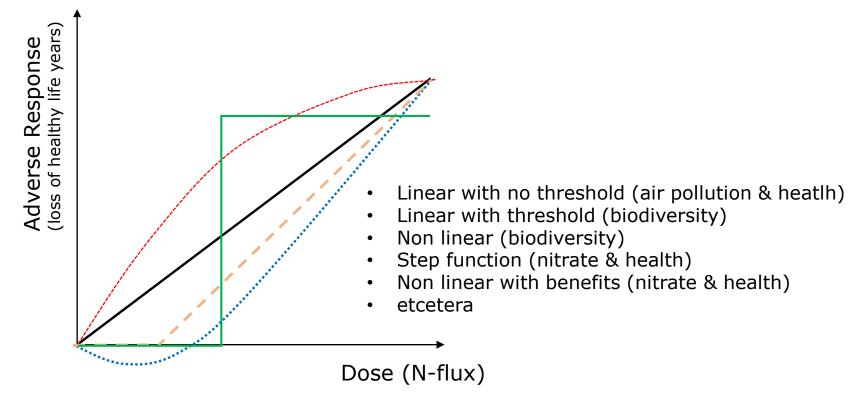
Environmental impacts of nitrogen 4 N compounds, 3 impact categories

	Human health	Ecosystems	Climate
NOx-air	Cara, Cancers mainly via ozone	Eutrophication Acidification	?Carbon-sequestration? ?cooling particles?
NH ₃ -air	Cara, Cancers ?weak causality?	Eutrophication Acidification	?Carbon-sequestration? ?cooling particles?
N (NO ₃)-water	Cancer (colon) ?weak epidemiology?	Aquatic Eutrophication	?Carbon-sequestration?
N ₂ O-air	Skin cancer, cataract		GHG-balance

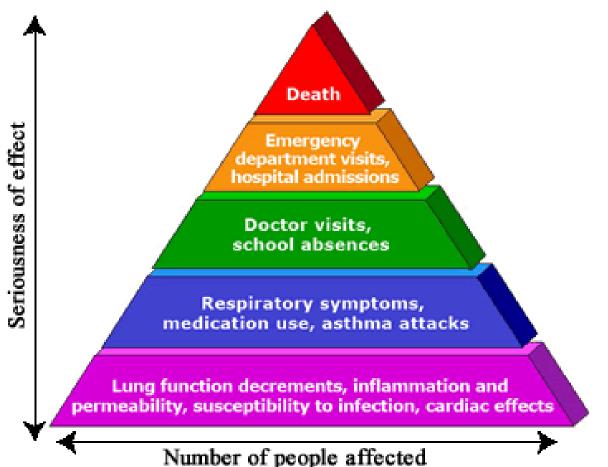


Environmental impacts of nitrogen 4 N compounds, 4 impact categories

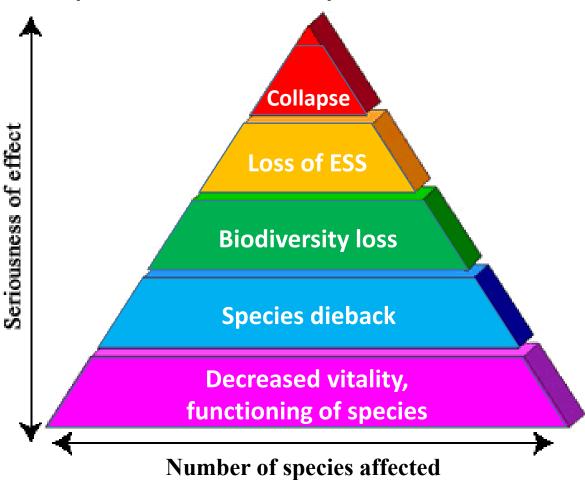
	Human health	Ecosystems	Climate	Food
NOx-air	Cara, Cancers mainly via ozone	Eutrophication Acidification	?Carbon-sequestration? ?cooling particles?	Crop damage mainly via ozone
NH ₃ -air	Cara, Cancers ?weak causality?	Eutrophication Acidification	?Carbon-sequestration? ?cooling particles?	N loss can reduce yield
N (NO ₃)-water	Cancer (colon) ?weak epidemiology?	Aquatic Eutrophication	?Carbon-sequestration?	N loss can reduce yield
N ₂ O-air	Skin cancer, cataract		GHG-balance	Climate driven yield change
N-fertilizer			GHG-balance	Yield increase


Principal steps of an impact pathway cost analysis

IIASA (2010)



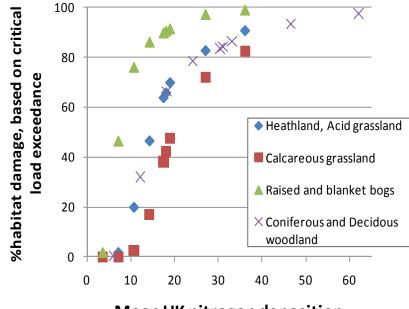
Examples of simple dose response functions for mpacts of N pollution



Pyramid of health impacts of air pollution (5 metrics)

Pyramid of ecoystem impacts of N pollution?

Revealed WTP for gained life year


Huidig luchtbeleid Borstkankerscreening Overgewicht campagnes Anti-rookcampagnes Gezonde voeding Vaccinatie kinderen Zonering LPG-stations Vermijden campylobacterbesmetting Rotondes Rookdetectoren Dode hoek spiegels vrachtwagens Radonblootstelling (ventilatie) APK-keuring auto's Kankermedicijnen Deltawerken Chloortransport 10.000.000 1.000 10.000 10 100 100.000 1.000.000

Figuur 11 Illustratie van de uitkomsten van afwegingen voor verschillende beleidsterreinen: achteraf gebleken waardering voor een gewonnen levensjaar in euro's (logaritmische schaal)

3,000 to 3,000,000 €

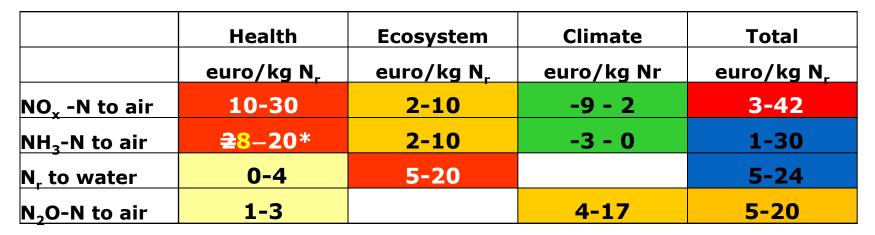
(EU 40,000 €)

Example: N response curve ecosystem damage

Mean UK nitrogen deposition

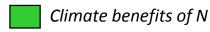
<u>Non linear with threshold</u> (Critical N load ≈ 10 kg N ha⁻¹ yr⁻¹) External cost based on critical load exceedance The economic value of N damage/benefit in ENA Standard economic concepts and methods for valuation Key is willingness to pay approach (WTP)

- Health impacts
 - WTP (stated) to reduce the risk of premature death
 - WTP (stated) to reduce pain and suffering
 - Costs for real economy: medical treatment, lost labor productivity
- Ecosystems impacts
 - WTP (stated) to restore ecosystem damage
- Climate impacts
 - WTP (revealed) to reduce greenhouse gas emissions
- Benefits for food and bioenergy production
 - Added economic value


Positive

or

Calculation of costs and benefits of N pollution by Unit Costs


- 1. Determine societal cost or benefit of N related impact
- 2. Determine contribution of N to impact
- 3. Determine cost per unit of N emission for impact (UC)
 - UC = [Result 1] x [Result 2] / [N emission]
- 4. Extrapolate to determine N costs, eg.
 - Change of N emissions
 - For other regions

Unit cost method N-Cost = Price x Emission

X

	Emission EU27
Year 2008	Mton (Tg)
NO _x -N to air	3.2
NH ₃ -N to air	3.1
N _r to water	4.6
N ₂ O-N to air	0.8

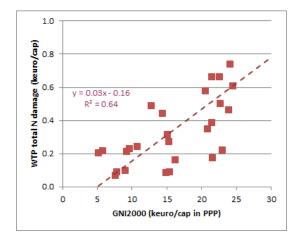
- European Commission 2013,
- Brunekreef et al., Lancet 2016

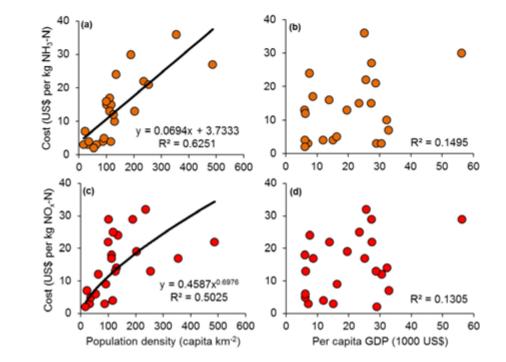
INMS

Unit N (marginal) costs between 1995 and 2005 of different Nr threats in EU based on WTP

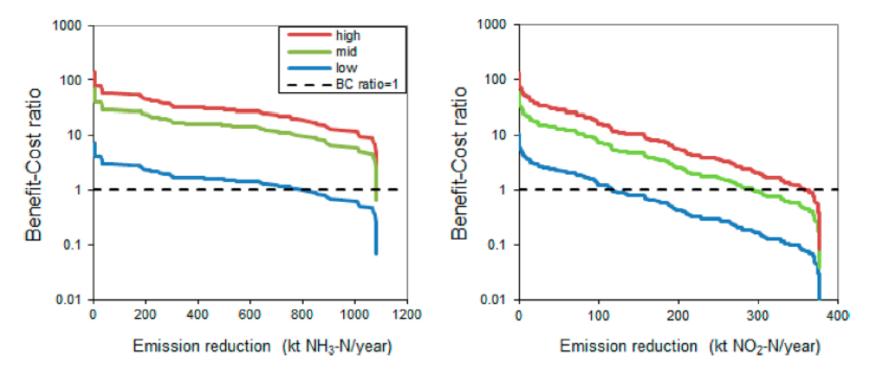
Effect	Emitted nitrogen form	Emission/ loss to	Estimated cost € per kg N _r emitted,
Human health (PM, NO_2 and O_3)	NO_{x}	Air	10-30
Ecosystems (eutrophication, biodiversity)	$N_{\rm r} {\rm runoff}$, deposition	Surface Water	5 – 20
Human health (particulate matter)	NH3	Air	2-20
Climate (greenhouse gas balance)	N ₂ O	Air	4 - 17
Climate**	NOx	Air	-9 - 2
Climate**	NH ₃ ,	Air	-3 - 0
Ecosystems (eutrophication, biodiversity)	$\rm NH_3$ and $\rm NO_x$	Air	2-10
Human health (drinking water)	Nr (nitrate)	Groundwater	0-4
Human health (increased ultraviolet radiation from ozone depletion)	N ₂ O	Air	1-3
Crop damage (ozone)	NO _x	Air	1-2

Cooling effects


Data sources for N impact monetarization ENA 2011


Domain	Component	Source
Health,	NOx-air, NH3 air	EXTERNE (2005)
	NO3-water	Grinsven et al 2010, De Roos et al 2003
	N2O (ozone layer)	Struijs et al. 2010
Terrestrial ecosystems	NOx, NH3	NEEDS, 2006; Christie 2006
Aquatic ecosystems	N-water	Söderqvist & Hasselström, 2008 (Baltic) AQUAMONEY
GHG balance	N2O-stratosp	CO2-price Emission Trading System

Proxies to extrapolate ENA results to Global



First estimate of global cost of N damage 200 to 2000 billion US dollars (ONW, 2013)

Tool to help find optimum mitigation

(additional to cost minimization as in e.g. GAINS)

N-CBA's based on Unit Cost Methods published for EU, USA, India, China

(N pollution cost all around 1-4% GDP)

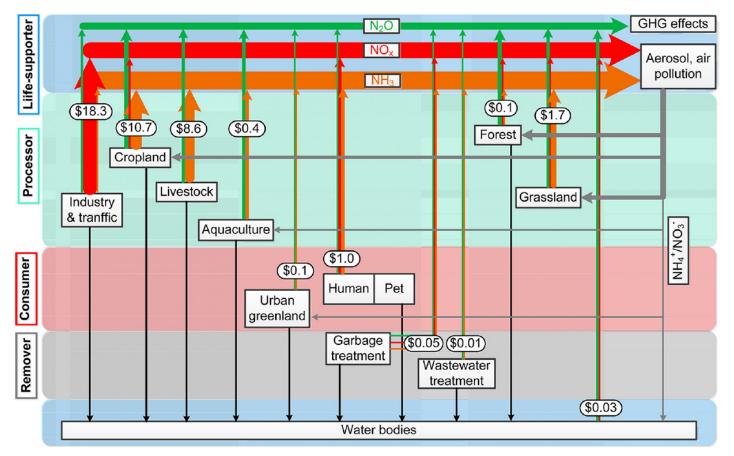
Cost of N pollution in India 🎎 NMS

- 2000: 17 bio USD/yr; - 2015: 75 bio USD/yr (3.5% GDP)

GDP scaled Unit N Costs FNA

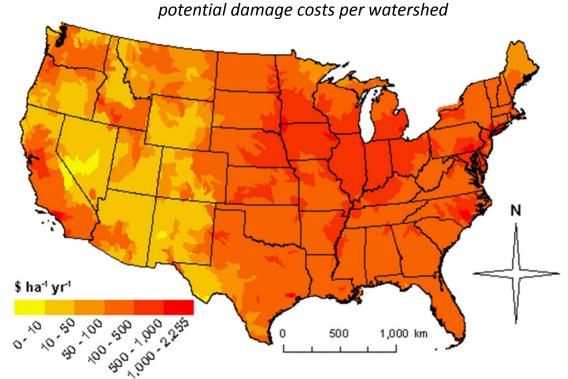
Year: 2000	Emission	Health costs ^a	Ecosystem costs ^a	Climate costs ^a	Total costs ^a	Health costs	Ecosystem costs	Climate costs	Total costs
N losses	Mt 5 N/year ⁻¹	USD kg ⁻¹ N				Billion USD year ⁻¹			
N _r to water	5.6 ^b	0.1	1.1	_	1.2	0.5	6.4	-	6.9
NH₃ to air	5.0 ^c	1.1	0.2	-	1.3	5.7	0.9	-	6.6
NO _x to air	1.6℃	1.7	0.2	-	1.9	2.7	0.3	-	3.0
N ₂ O to air Total	0.4 ^c	0.2	_	0.9	1.0	0.1	_	0.4	0.5 17.1
Year: 2015	Emission	Health	Ecosystem	Climate	Total	Health	Ecosystem	Climate	Total
N losses	Mt N year ⁻¹	USD kg ⁻¹ N			Billion USD year ⁻¹				
N _r to water	7.5	0.3	3.6	0.0	3.9	2.3	27.1	-	29.3
NH₃ to air	6	3.6	0.6	0.0	4.2	21.6	3.6	-	25.2
NO _x to air	3.2	5.4	0.6	0.0	6.0	17.3	1.9	-	19.2
N ₂ O to air	0.5	0.6	0.0	2.7	3.3	0.3	_	1.4	1.7
Total									75.4

Table 2.1 Summary of Reactive Nitrogen Emissions in India for 2000 and 2015 With a First Indication of the Societal Costs of Nr Pollution per unit N and Scaled up to the Country


Sutton et al in Abrol, Adhyas et al (2017) 37

Cost of N in air pollution China 2008

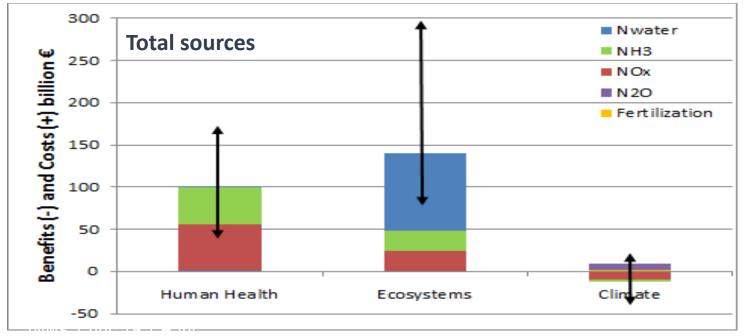
- 19-62 billion USD/yr 0.4-1.4% of GDP


- 52-60% NH3 emission 39-47% NOx emission

Cost of N pollution USA around 2000

- 210 bio USD/yr (range 81–441
- 1-3% GDP; agri N share 75%

European Union 2008


N pollution cost:

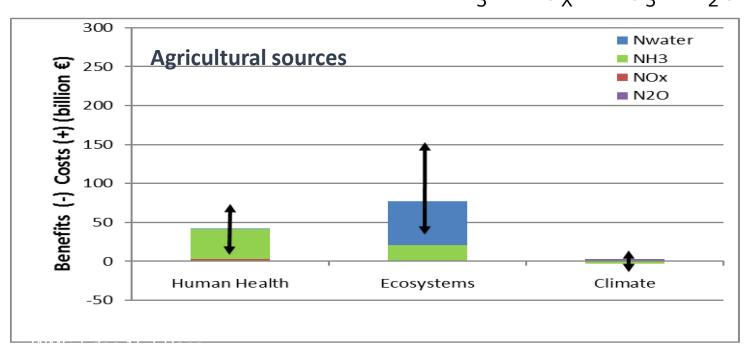
75-485 billion euro/yr150-1150 euro/capita1-4% GDP loss

Large uncertainties

Contributions NO_X , NH_3 and N_{water} (NO_3) similar **Health Impacts**

 $NO_X \approx NH_3 \gg NO_3 > N_2O$

(Grinsven et al., ES&T 2013; Our Nutrient World, 2013)



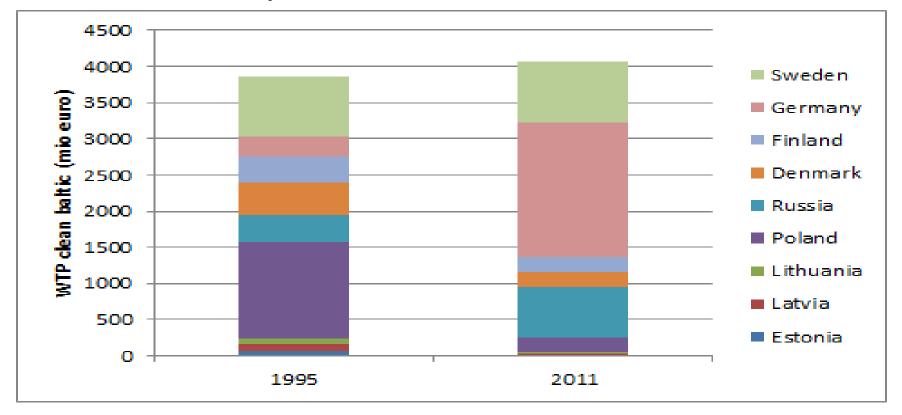
European Union 2008

N pollution cost:

35-230 billion euro/yr (half of total)

Fifty-fifty due to NH_3 and N runoff Health Impacts $NH_3 \gg NO_X > NO_3 > N_2O$

(Grinsven et al., ES&T 2013; Our Nutrient World, 2013)

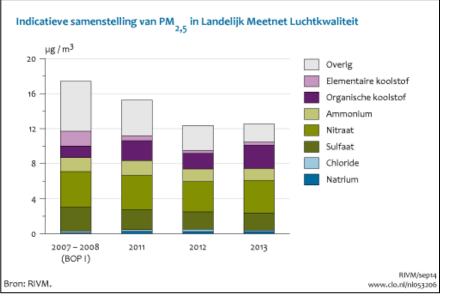

Summary Biodiversity Benefit EU28

	CLE 2025	MFTR 2025	Net benefit 2025	ENA 2008 Ter Ecosys		
	billion €/yr					
WTP	3.2-9.5*	2.3-6.8	0.9-2.6	13-63#		
WTP ppp	2.7-8.0	1.9-5.6	0.8-2.5			
Repair cost	9.1	6.4	6.4			
Revealed regul. cost	54.8	65.0	9.2			

*Based on UK WTP of 80-240 €/ha (Christy et al 2006; 2010); 10-30 €/household Maas (2014) #Based on EU unit cost of 2-10 €/kgN (Ott et al 2006)

WTP survey clean Baltic

Results change over time



Recent findings: Health impacts ammonia- nitrate aerosols

Secondary inorganic aerosols (SIA): **Epidemiological** studies have frequently found these to be associated with adverse health effects. This is **not consistent** to findings from controlled **laboratory** studies.

EU Air Quality policy considers SIA equally harmful as primary PM

- EU: \approx 30% of PM_{2.5} as N SIAs
- Netherlands ≈ 50%

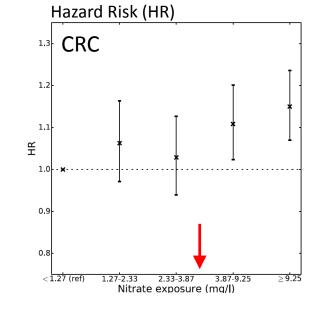
Health benefit of reduction NMS of agricultural emissions

Due to its strong contribution to the PM_{2.5} mass, control strategies in NH₃ emissions could possibly reduce the mortality attributable to air pollution

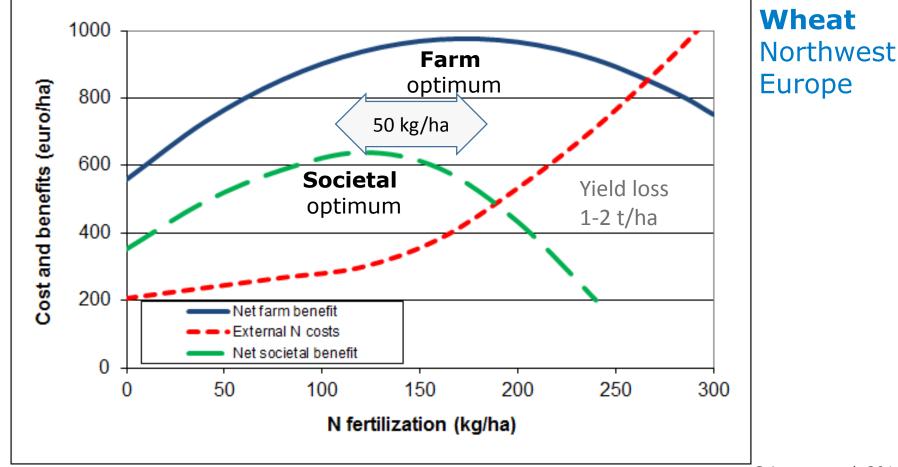
Mortality attributable to air pollution (1000 people/yr) and effect of three scenarios with agricultural emissions reductions of 50% and 100%

Region		REF	R	EF_50	REF_75	
	average	range	average	range	average	range
Europe	277	(148–414)	225	(107–361)	176	(66–313)
North America	54	(21 - 100)	38	(11-81)	26	(6-65)
South Asia	778	(410 - 1140)	753	(396-1107)	750	(395–1102)
East Asia	1381	(607-1929)	1275	(553-1812)	1195	(514–1719)
World	3155	(1523–4603)	2905	(1375–4313)	2739	(1280–4123)

(Pozzer et al, 2017)

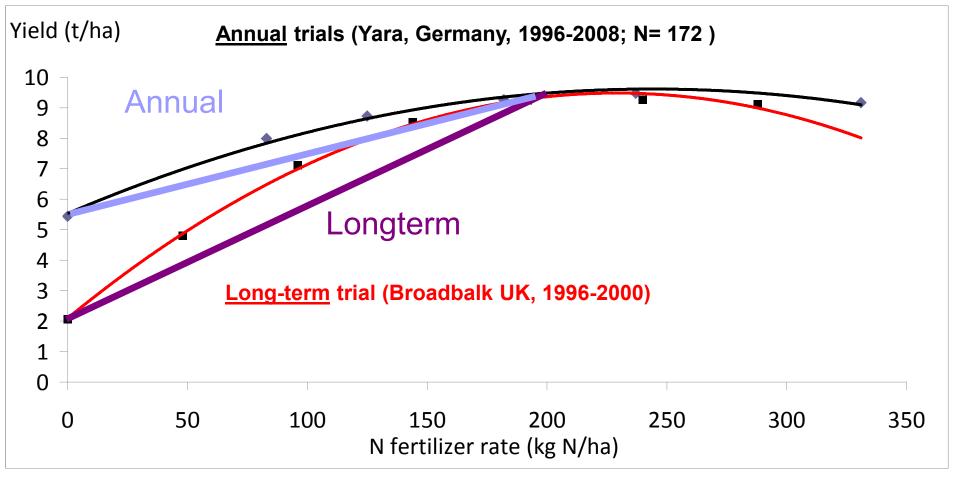

Recent findings: health loss below 25 mg/l NO₃ drinking water

Espejo-Herrera et al. (2016); Spain:

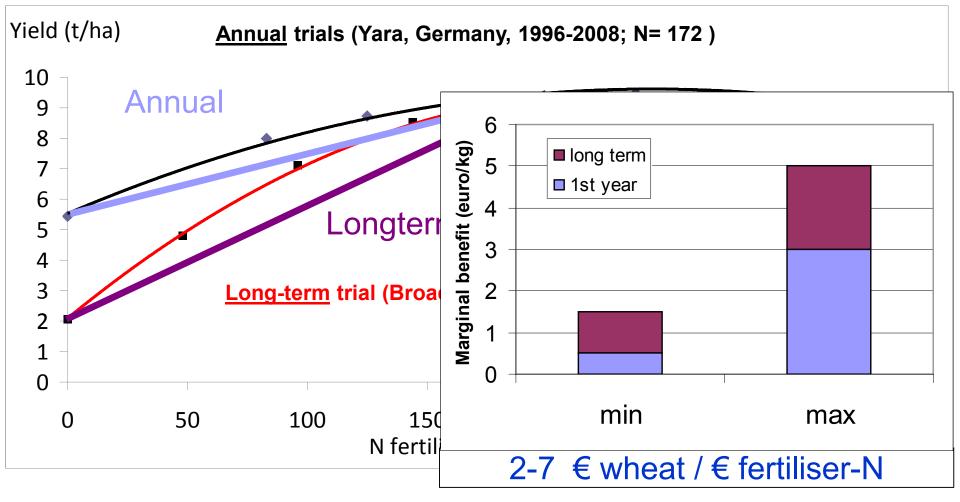

 ≈1.5-fold increased risk for colon cancer if drinking water nitrate >8.6 mg/L and rectum cancer >4.3 mg/L

Schullehner (2018); Denmark

- Reconstruction of nitrate exposure 1970-present combining nitrate monitoring & modelling and medical records
- Statistically significant increased risks at drinking water levels above 3.87 mg/L NO₃
- Lower effect threshold does not mean more CRCs



Optimum N fertilization, accounting for external N costs



Grinsven et al, 2014

Marginal direct Nr benefits

