
OPPORTUNITIES OF SATELLITE OBSERVATIONS FOR IMPROVING NITROGEN DEPOSITION ESTIMATES

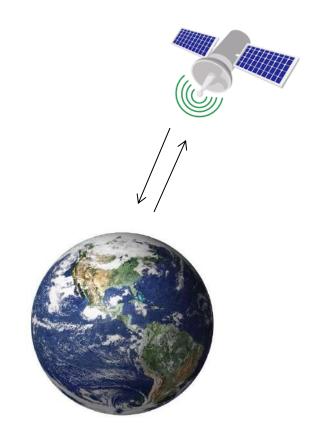
OUTLINE

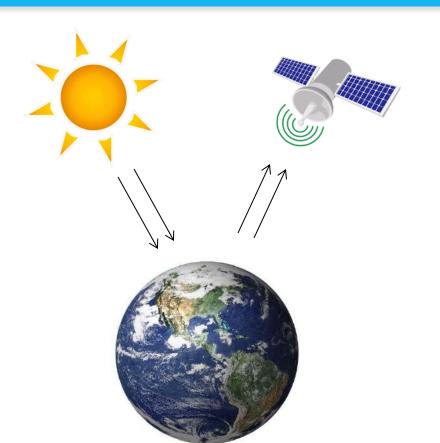
- Introduction
- Satellite products relevant for N (-deposition)
- Combining models and satellite: Recent developments
- VU and TNO activities
- Potential products expected the coming years

SATELLITE REMOTE SENSING

SATELLITE REMOTE SENSING

Visible Light


Electromagnetic spectrum & atmospheric transmittance


100% 0 1016 1015 1014 1013 1012 1011 1010 109 Frequency (Hz) Thermal/ X-Rays Ultraviolet Near IR Mid IR Far IR Microwave Radio 0,01µm 0,1µm 10µm 100µm 1µm 1mm 10mm 100mm 1m Wavelength 0,4 0,7 0,5 0,6 1µm

Atmospheric Transmittance

Source: Albertz et al., 2007

SATELLITE REMOTE SENSING

Active sensors Emit their own energy source

Passive sensors

Use the sun and earth as energy source

ACTIVE REMOTE SENSING

RADAR

RAdio Detection And Ranging

- MetOp, Envisat, Sentinel-1, ...
- SAR, scatterometers, altimeters

LIDAR

Light Detection And Ranging

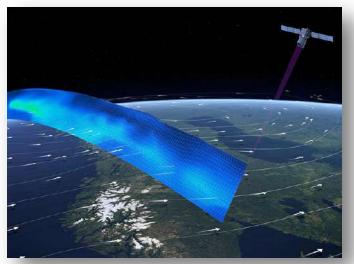
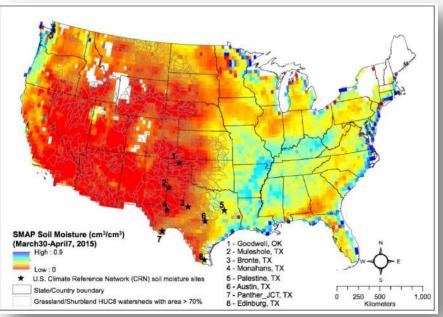

- ICESat, CALIPSO, ...
- Discrete return or full waveform

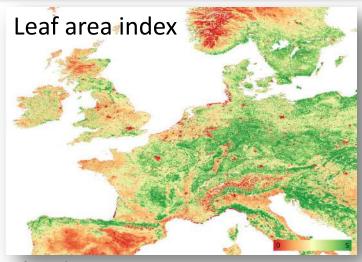
Figure 1: CALIPSO's laser probing Earth's atmosphere. Credits: P. Carril / CNES

ACTIVE REMOTE SENSING


Wind speed

Tree canopy height

Soil moisture


PASSIVE REMOTE SENSING

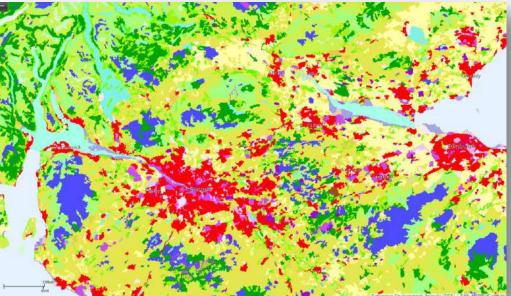
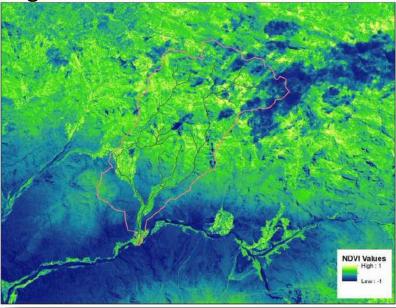
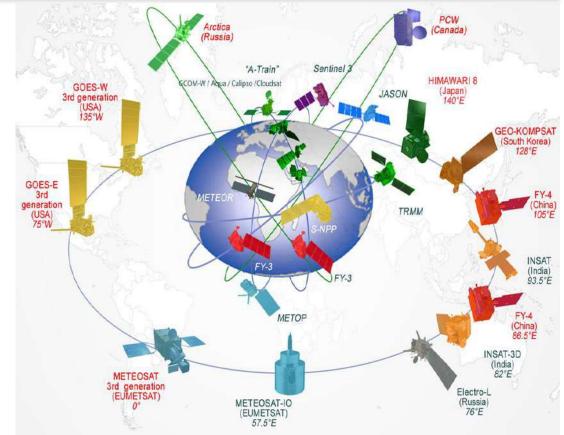

Mission (Instrument)	Spectral bands	Resolution	Coverage
Terra/Aqua (MODIS)	36 bands	250 – 500 m	Global, daily
Landsat (OLI-TIRS)	11 bands	30 m	Global, 16 days
RapidEye (5 satellites)	5 bands	5 m	Global, 5 days
SPOT	5 bands	5–1.5 m	Global, 26 days

Table 1: Examples of multi-spectral satellite missions with different horizontal resolutions.


PASSIVE REMOTE SENSING

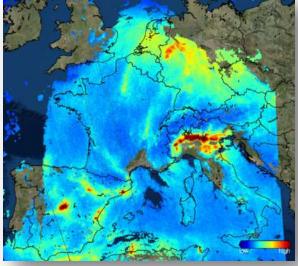
High resolution land use maps


Vegetation indices

⁽Padgett-Vasquez, S., 2014)

METEOROLOGICAL SATELLITES

- Passive remote sensing (most)
- Geostationary & polar-orbiting
- Examples of products:
 - Temperature
 - Humidity
 - Wind fields
 - Cloud fields


Source: Deutsche Wetterdienst, www.dwd.de

- Foundation of Numerical Weather Prediction Models
- Used in Atmospheric Transport Models

ATMOSPHERIC COMPOSITION

- Passive sensors
- Main absorption lines
 - NO₂ in UV region
 - NH₃ in IR region

Figure 1: TROPOMI measurements of atmospheric NO₂ over Europe.

	Instrument	Footprint	Coverage	
NO ₂	OMI (Ozone Monitoring Instrument)	24 x 13 km ²	Global, daily	2004 -
	GOME-2 (Global Ozone Monitoring Experiment)	80 x 40 km ²	Global, near-daily	2006-
	TROPOMI (TROPOspheric Monitoring Instrument)	7 x 7 km ²	Global, daily	2018 -
NH_3	AIRS (Atmospheric InfraRed Sounder)	50 x 50 km ²	Global, twice daily	2002 -
	TES (Tropospheric Emission Spectrometer)	5 x 8 km ²	Global, 16 days	2004-2018
	IASI (Infrared Atmospheric Sounding Interferometer)	12 x 12 km ²	Global, twice daily	2006 -
	CrIS (Cross-track Infrared Scanner)	14 x 14 km ²	Global, twice daily	2011 -

Table 1: Overview of satellite instruments that measure atmospheric N_r components.

ATMOSPHERIC COMPOSITION

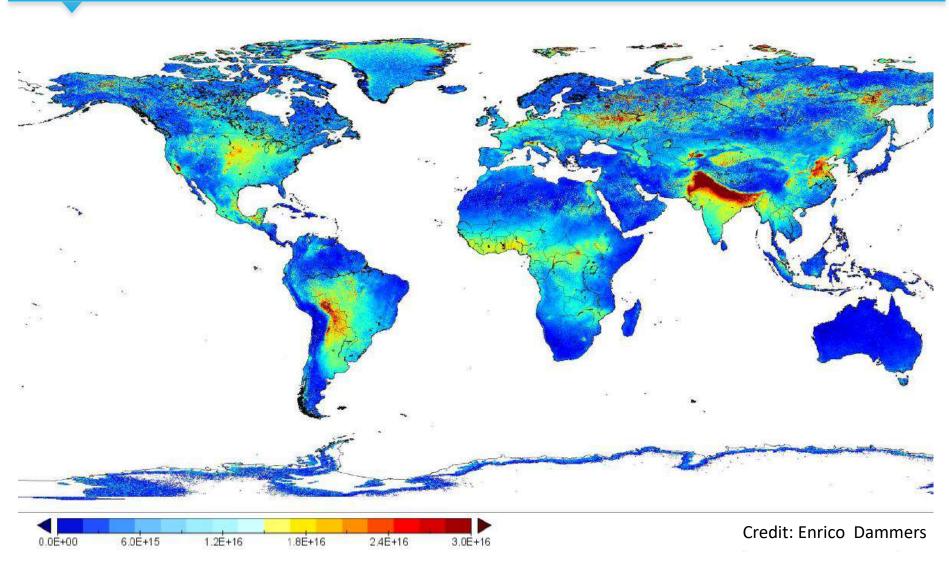
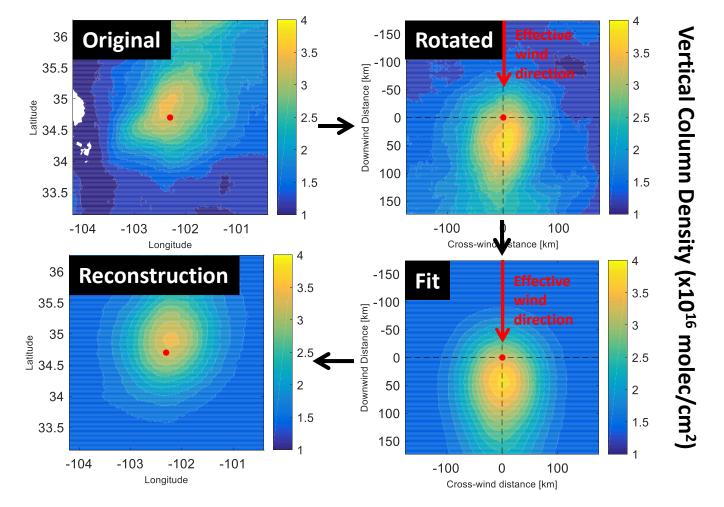



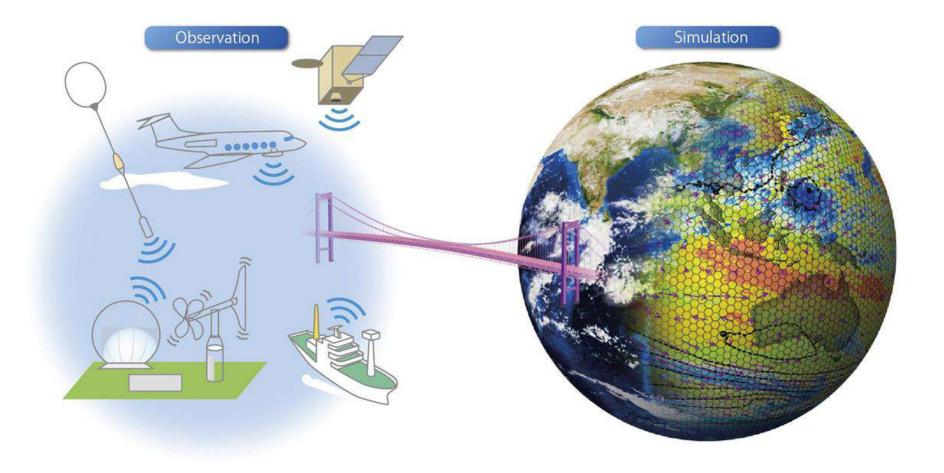
Figure 1: NH₃ total column (molecules/cm2) measured by IASI, weighted mean 2008-2013.

POINT SOURCE EMISSIONS

Point source emissions and atmospheric lifetime estimation

Credit: Enrico Dammers & Chris Mclinden

COMBINE MODEL AND SATELLITE


Advantages of satellite observations:

- Many different products available
- Large-scale coverage at high spatial resolution

But...

- Only observe state of a system at the satellite overpass
- Missing data (e.g. clouds, instrument errors,...)
- Limited validation

COMBINE MODEL AND SATELLITE

Create a link between observations and model simulations

COMBINE MODEL AND SATELLITE

Possible ways to combine model & satellite:

- Satellite observations as input for models
- Models for translating satellite information into products
- Data-assimilation
 - Observations incorporated into the model state itself
 - Considers uncertainty of both the model and observations

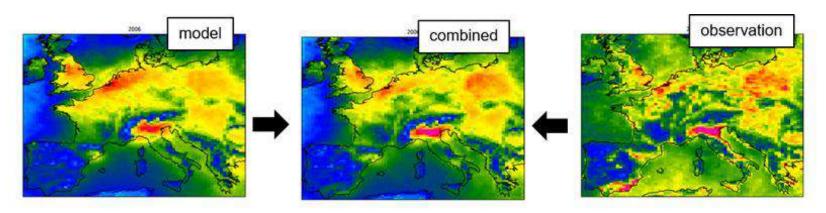


Figure 1: Data-assimilation of the OMI-NO₂ product in the LOTOS-EUROS atmospheric transport model.

RECENT DEVELOPMENTS (N_R DEPOSITION)

Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from space-based measurements

C. R. Nowlan^{1,2}, R. V. Martin^{1,2}, S. Philip¹, L. N. Lamsal³, N. A. Krotkov³, E. A. Marais⁴, S. Wang⁵, and Q. Zhang⁶

2014

Dry deposition of NO₂ over China inferred from OMI columnar NO₂ and atmospheric chemistry transport model

X.Y. Zhang ^a, X.H. Lu ^{a, *}, L. Liu ^a, D.M. Chen ^{b, c}, X.M. Zhang ^{a, d}, X.J. Liu ^e, Y. Zhang ^f

Global inorganic nitrogen dry deposition inferred from groundand space-based measurements

Yanlong Jia^{1,2}, Guirui Yu¹, Yanni Gao³, Nianpeng He¹, Qiufeng Wang¹, Cuicui Jiao^{1,2} & Yao Zuo^{1,2}

2016

2017

Estimation of monthly bulk nitrate deposition in China based on satellite NO₂ measurement by the Ozone Monitoring Instrument

Lei Liu ^a, Xiuying Zhang ^{a,*}, Wen Xu ^b, Xuejun Liu ^b, Xuehe Lu ^a, Dongmei Chen ^c, Xiaomin Zhang ^a, Shanqian Wang ^{a,d}, Wuting Zhang ^a

2017

Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO₂ columns

Jeffrey A. Geddes^{1,a} and Randall V. Martin^{1,2}

2017

Dry Deposition of Reactive Nitrogen From Satellite Observations of Ammonia and Nitrogen Dioxide Over North America

S. K. Kharol¹ ⁽¹⁾, M. W. Shephard¹ ⁽¹⁾, C. A. McLinden¹ ⁽¹⁾, L. Zhang¹ ⁽¹⁾, C. E. Sioris¹ ⁽¹⁾, J. M. O'Brien¹ ⁽¹⁾, R. Vet¹ ⁽¹⁾, K. E. Cady-Pereira² ⁽¹⁾, E. Hare¹, J. Siemons^{1,3}, and N. A. Krotkov⁴ ⁽¹⁾

Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from space-based measurements

C. R. Nowlan^{1,2}, R. V. Martin^{1,2}, S. Philip¹, L. N. Lamsal³, N. A. Krotkov³, E. A. Marais⁴, S. Wang⁵, and Q. Zhang⁶

Dry deposition of NO₂ and SO₂

- Combination of OMI-NO₂ and the GEOS-Chem model
- Vertical profiles from GEOS-Chem used to compute surface concentrations

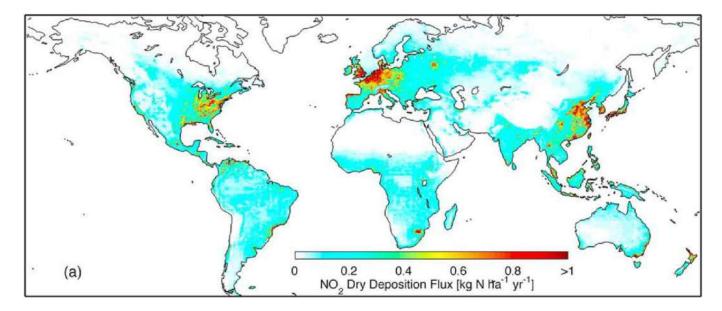


Figure 1: Total 2005-2007 annual mean nitrogen deposition from NO₂ dry deposition [Nowlan et al., 2014].

Dry deposition of NO₂, HNO₃, NO₃-, NH₄+, NH₃

- Empirical model that relates OMI-NO₂ total columns to ground measurements from 555 monitoring sites for NO₂, HNO₃, NO₃-, NH₄+
- NH₃ surface concentrations directly interpolated from 267 monitoring sites

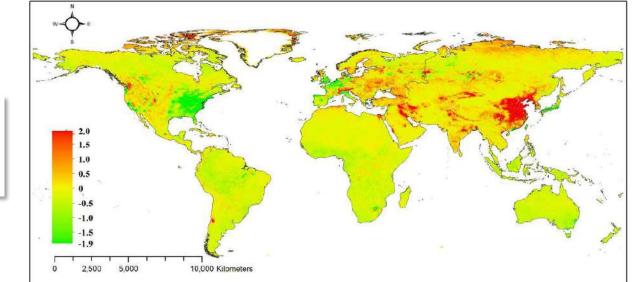


Figure 1: Average annual changes in dry N deposition fluxes (kg N ha-1 a-1) from 2005-2014 [Jia et al., 2016].

Global inorganic nitrogen dry deposition inferred from groundand space-based measurements

Yanlong Jia^{1,2}, Guirui Yu¹, Yanni Gao³, Nianpeng He¹, Qiufeng Wang¹, Cuicui Jiao^{1,2} & Yao Zuo^{1,2}

Dry Deposition of Reactive Nitrogen From Satellite Observations of Ammonia and Nitrogen Dioxide Over North America

S. K. Kharol¹ (D, M. W. Shephard¹ (D, C. A. McLinden¹ (D, L. Zhang¹ (D, C. E. Sioris¹ (D, J. M. O'Brien¹ (D, R. Vet¹ (D, K. E. Cady-Pereira² (D, E. Hare¹, J. Siemons^{1,3}, and N. A. Krotkov⁴ (D)

- Dry deposition of NO₂ and NH₃
- OMI-NO₂ and CrIS-NH₃ satellite observations
- NO₂ vertical profile and V_d from GEM-MACH model
- NH₃ vertical profile from CrIS retrieval

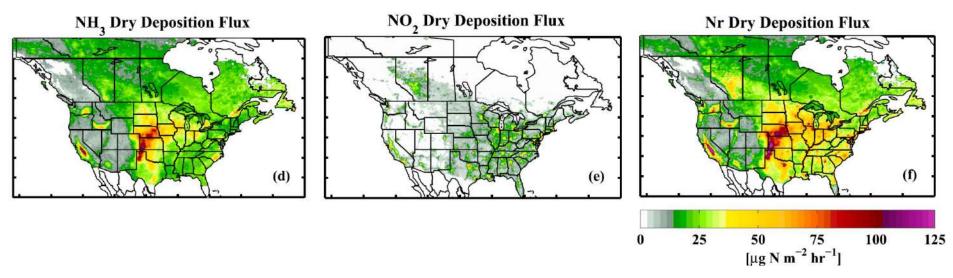
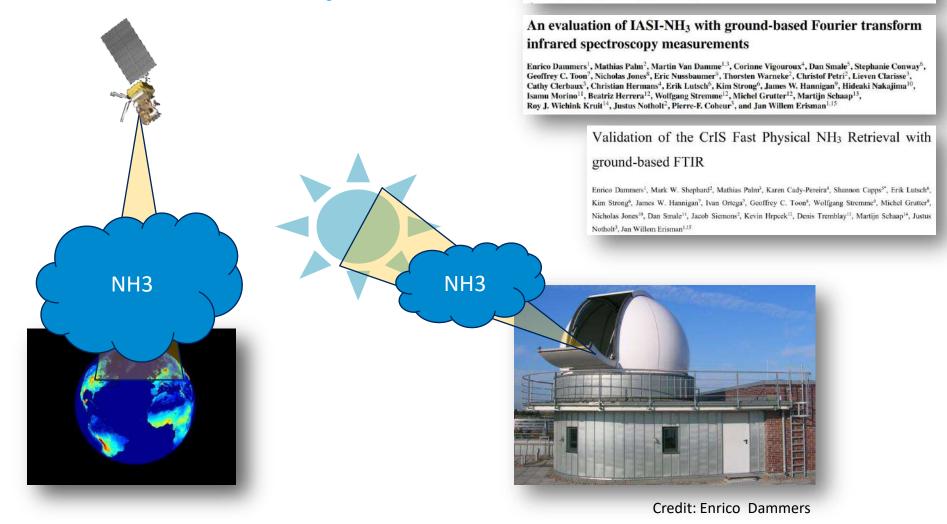



Figure 1: Dry nitrogen deposition from NH₃ and NO₂ during the warm season of 2013 [Kharol et al., 2018].

Validation of IASI and CrIS NH₃ products

Retrieval of ammonia from ground-based FTIR solar spectra

E. Dammers¹, C. Vigouroux², M. Palm³, E. Mahieu⁴, T. Warneke³, D. Smale⁵, B. Langerock², B. Franco⁴, M. Van Damme^{1,6}, M. Schaap⁷, J. Notholt³, and J. W. Erisman^{1,8}

Both IASI and CrIS satellite products are consistent with FTIR measurements

IASI:

- Underestimates the retrieved columns (~30%)
- Not enough sensitivity near surface for good comparison with in situ-data

CrIS:

- Underestimates high concentration levels
- Overestimates low concentration levels
- Good correlations with in-situ data

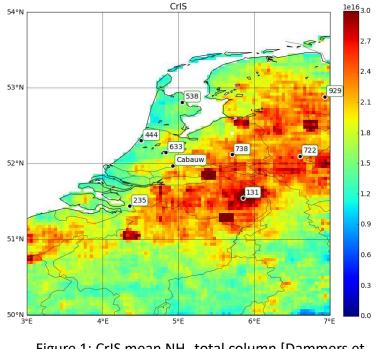


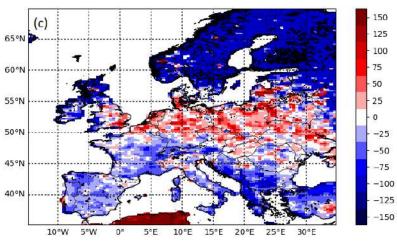
Figure 1: CrIS mean NH₃ total column [Dammers et al., 2017].

Science and mission objectives

Mission objectives

mapping near-surface atmospheric NH₃ and NO₂ at spatial scales of 1 km or below

- 1. To *quantify the* **emissions** of the main contributors to reactive nitrogen –NO_x and NH₃– on the landscape scale, and to *attribute the relative contributions of natural, industrial, agricultural, fire and urban sources*.
- 2. To *quantify the atmospheric* **dispersion and deposition** of reactive nitrogen and its impacts on ecosystems.
- 3. To quantify the contribution of reactive nitrogen to air pollution.
- 4. To reduce uncertainties in the contribution of reactive nitrogen to climate forcing through a better understanding of atmospheric chemical reactions, secondary aerosol formation and biogeochemical cycles.


Nitrosat would will fill observational gaps needed to address several ESA's living planet scientific challenges Atmosphere (A1, A2, A3) - Land surface (L1, L2, L3, L5) - Ocean (O1, O3)

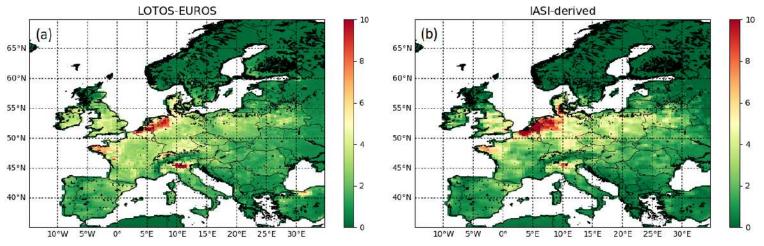
Credit: Martin van Damme, Pierre Coheur, UVB

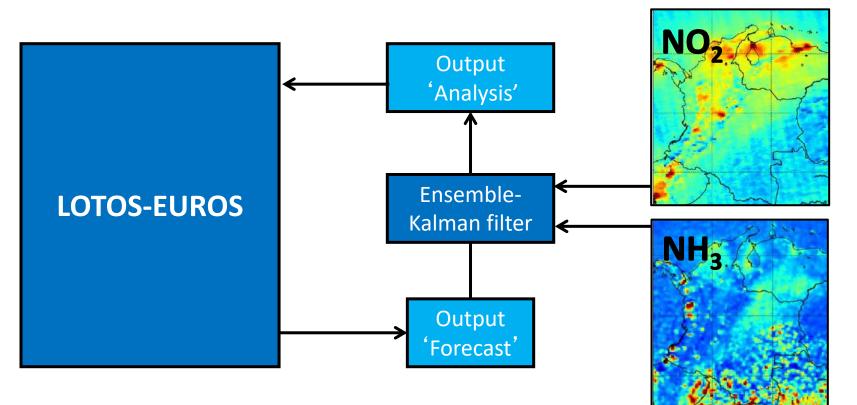
VU AND TNO ACTIVITIES

NH₃ surface concentrations & dry deposition fluxes over Europe

- Combination of LOTOS-EUROS model and IASI-NH₃ satellite observations
- Comparison with in-situ measurements

Mean NH₃ dry deposition flux ($kg \ N ha^{-1}yr^{-1}$) in 2013




Figure 1: Modelled (a) and IASI-derived (b) mean dry NH₃ deposition flux in 2013.

Relative difference (%)

VU AND TNO ACTIVITIES

Simultaneous data-assimilation of NO₂ and NH₃ satellite observations to obtain:

- Top-down emission adjustments
- Total N_r deposition maps

Towards a more realistic surface characterization in LOTOS-EUROS...

Implementation of a higher resolution land-use map with coupled remote sensing derived parameters, such as:

- Leaf-area index
- Vegetation height, roughness length z₀

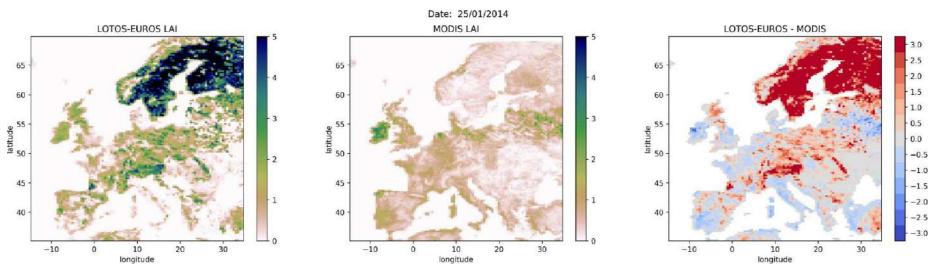


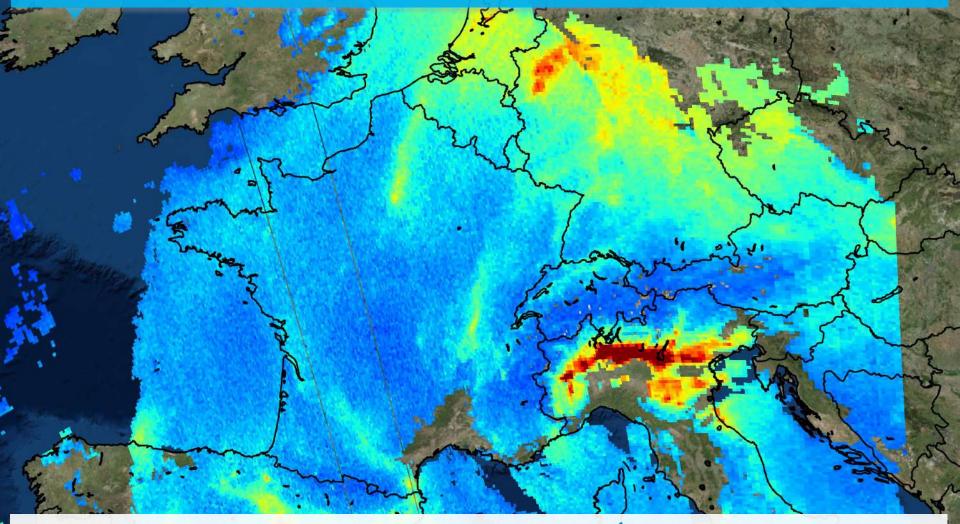
Figure 1: Comparison of the leaf-area index in the LOTOS-EUROS model and from MODIS.

VU AND TNO ACTIVITIES

Link between nitrogen deposition and carbon exchange/drought stress

Compare newly-derived nitrogen deposition maps to:

- Local-scale measurements of C-exchanges
- Satellite-derived drought indicators
- Satellite-derived vegetation parameters


POTENTIAL PRODUCTS EXPECTED THE COMING YEARS

Methodology for improved quantification of N_r deposition at different scales (local-global)

- N_r deposition/emissions
- N_r concentration distributions
- Trend analyses
- N_r in relation to greenhouse gases
- N_r in relation to future emission scenarios
- Assessment of N_r critical load exceedances
- Assessment of effect of N_r in relation to biodiversity loss

OPPORTUNITIES OF SATELLITE OBSERVATIONS FOR IMPROVING NITROGEN DEPOSITION ESTIMATES

