

INMS Component 2: Global & regional quantification of N use, flows, impacts & benefits of practices

Wim de Vries (WUR, the Netherlands)
Jean Ometto (CCST/INPE, Brazil)

Activity Leads

Beth Boyer, Mark Sutton, Clare Howard, William Brownlie, David Kanter, Wilfried Winiwarter, Sarah Walker, Albert Bleeker

INMS 5 meeting 8 July 2020

Scope & Approach

Quantification of N flows, threats & benefits Wim de Vries / Jean Ometto

Activity 2.1

Quantifying N flows, threats and benefits at global and regional scales

De Vries/Boyer

Activity 2.2

Preparation of global assessment of N fluxes, pathways & impacts

Sutton/Howard

Activity 2.3

Integrating methods, measures & good practices to address N_r issues Brownlie/Bleeker

Activity 2.4

Future N storylines & scenarios with management/ mitigation options & CBA Winiwarter/Kanter

Activity 2.5

Collation & synthesis of experience & measures adopted by GEF and others

Bleeker/Walker

A2.1 (A1.5)/A2.4: Modelling/scenarios

- Modelling report: ready with all needed information on model use/protocol
- Modelling team ready: comparing IAMs and running scenarios
- INMS scenarios agreed upon: linked to existing SSP-RCP scenarios/ storylines with added new "N policies" (A2.4)

A2.3/A2.5: Measures

- Beta version of database is available on INMS website for A2.3.
- Collection of content underway
- Delivery is delayed but approach ready

A2.2: The INI book

- Draft table of content ready.
- Author teams under construction

Contents

Global scale integrated N assessment modelling

- The rationale: need for cost-benefit quantification of N policies
- The challenge: modelling interactions in the N cascade

INA part C: Global integrated assessment across the N cycle

- Outline and links to INMS modelling
- Examples of model results
 - Present (and past) N impacts
 - Future N impacts in response to scenarios and measures

Interaction between models and demo-regions; planning

Benefits: food and feed production

Threats of N use in agriculture: Impacts on air, soil and water quality: health, climate and biodiversity

In addition: Impacts of (industrial) N emissions on air quality and human health

Impacts of (industrial) N emissions on air quality and human health

• NO_x emissions lead to ozone (O_3) formation in troposphere (70%): UNEP estimated 1 million premature respiratory deaths globally:

• India: 400,000

• China: 270,000.

Africa: /Europe/US; 50,000

 NO_x and NH₃ emissions contribute to particulate matter (20%): WHO estimated 7 million premature deaths globally due to lung cancer, pulmonary diseases, respiratory infections etc.

The impacts of nitrogen (INMS) on SDGs

Translating SDGs to N flux indicators in simplified model system: critical N inputs

SDG	N flux	Indicators				
		Current	Target	Distance to target		
2 Zero hunger	Production indicators					
	N uptake/crop yield	Current	Potential	Potential-current		
	N Inputs	Current	Needed	Needed-current		
	Environmental indicators					
	N Losses					
15 Life on Land	• NH ₃ -N emissions	Current	Critical	Current - critical		
13 Climate action	• N ₂ O-N emissions	Current	Critical	Current - critical		
6 Clean water	 N leaching 	Current	Critical	Current - critical		
14 Life below water	N runoff	Current	Critical	Current - critical		
	N Surplus	Current	Critical	Current - critical		
	N Inputs	Current	Critical	Current - critical		
	Efficiency indicators					
12 responsible production	N use efficiency (NUE)	Current	Optimal	Optimal-current		

Global scale integrated N assessment modelling in view of benefits and threats

A global integrated nitrogen assessment model needs to quantify effects of N management (N policies) on:

- food, feed and fiber production (benefits)
- quality of air, soil and water, and related human health, climate and biodiversity impacts (threats)

while

- being linked to socio-economic drivers (scenarios)
- accounting for variations in climate, soils, crops.

Global scale integrated N assessment: challenge to model the N cascade

INMS global scale modelling approach

Global-scale modelling of flows and impacts of nitrogen use:

Modelling Approaches, Linkages and Scenarios

First INMS report: describes global scale modelling approach

- modelling approach, including needed models and model linkages to simulate N benefits and threats.
- modelling protocol on: (i)
 models involved, (ii) base year
 used (2010), spatial and
 temporal extent and resolution,
 (iii) scenarios used, (iv) model
 outputs and (v) model linkages.
- Database platform for the INMS model inputs and outputs.

Multi model approach: involved models and linkages

Status and Planning

Three integrated assessment models, IAMs (IMAGE, MAgPIE, GIOBIOM)

- Paper submitted to Nature Communications which gives a comparison of major N inputs and N outputs of the IAMs but also of FAO and IFA
- Results, during a historical period up to 2010 (2010 is base line year), show huge differences in N manure inputs and N uptake.
- INMS scenarios (SSP1, SSP2 and SSP5 with N policies) implemented in all three IAMs and results on future N budgets (and river N exports for IMAGE-GNM) are (near) ready.

Other models

- Results for base year (2010) are all ready
- All models are working on evaluation of scenarios (in different stages)
- TM5-FASST air quality model is used to calculate air quality impacts in response to various scenarios: results used for Cost benefit Analysis

Model results are part of chapters in INA part C

Impacts will be described by presenting current status and predictions up to 2050 (2010) based on WAGES	
• Starting with total N budgets.	C10
• Water quality: linked to aquatic (marine) eutrophication	C11
• Air quality: linked to health	C12
• Greenhouse gas emissions: linked to climate	C13
• Ecosystems: linked to terrestrial and aquatic biodiversity	C14
 Soil: linked to soil N budgets (input, uptake, losses to air an water) and related soil acidification 	d C15

C16

• Finalizing with cost-benefit analysis

Example Chapter 11: Water quality assessment with Global NEWS

Strokal et al. (2020; INI Berlin proceedings)

Example Chapter 12: Air quality assessment with TM5-FASST

Absolute change in PM2.5 by removing NO_x and NH₃ emissions

Fractional change in anthropogenic PM2.5 by removing NO_x and NH₃ emissions

Impacts of NO_x and NH₃ emissions on PM_{2.5} affecting health: Van Dingenen et al. (2019)

Example Chapter 12: TM5-FASST: Assessment of ozone impacts on global food production

 Estimated global relative yield losses due to ozone is 3-16%

Global economic damage:

- 10–18 billion Euro
- About 40% of loss in China and India

Van Dingenen et al. (2009)

Example Chapter 14: GLOBIO: Impacts of N deposition (year 2015) on biodiversity

Schipper et al (in prep)

Example Chapter 14: Predicted critical load exceedances using IMAGE

Example Chapter 15: Soil N budget results with IMAGE

Challenge ahead: systematic evaluation of scenarios and N mitigation measures

We use existing global scenario's, i.e. SSPs and RCPs, including dietary change propositions.

We assess separate N mitigation policies related to

- enhanced (animal, plant, human) waste recycling
- improved nutrient management.

Measures: A2.3 and A2.5

Scenarios: A2.4

Examples of scenario results

Change in harmful algal blooms in lakes (2010 -> 2050) in response to SSP2 scenario

Deterioration in many regions due to increased N and P loading as well as temperature rise.

Janse et al (in prep)

Result of Integrated model assessments: part C of the INA book

- Current status of N uses on soil, air and water quality and thus on biodiversity, human health and climate
- Evaluate impacts (costs and benefits) of scenarios and N related N policies/measures (management) on air, soil and water quality for:
 - food/feed supply
 - Biodiversity, human health and climate

Basis is result of coupled models evaluating scenarios (population growth, dietary patterns, bioenergy use) and N policies/measures

Interaction modelling and demo-regions

Questionnaire send to Contact persons of demo regions asking for:

- interested in a full N budget for their region by IAM models
- more detailed data on inputs for assessing N budgets for region
- Validation data on N concentrations in air, ground water and/or surface water.

Region	Interest	: Input data	Monitoring data
*) North America	Yes	N inputs + uptake	Air, ground/surface water
*) Western Europe	Yes	N inputs + uptake	Air, ground/surface water
*) East Africa	Yes	N inputs + uptake	Air, ground/surface water
*) Eastern Europe	Yes	N inputs + uptake	Air, surface water
*) South Asia	Yes	N inputs + uptake	Air, ground/surface water
• *) East Asia: China and Japan	Yes	No	Air
• *) Latin America: La Plata Basii	nYes	N inputs + uptake	Air, ground/surface water

Agenda meeting Component 2

- A1.5/A2.1. Introduction C2 and modelling: Wim de Vries
- A 2.4 Scenarios: Ecolex database: David Kanter
- A 2.3 Measures & good practices: Will Brownlie
- A 2.5 Experience & measures adopted by GEF: Sarah Walker/ Albert Bleeker
- A2.2 Status and planning of INA book: Clare or Mark:
- Overall discussion

Questions?

